

Baugrund | Altlasten | Umwelttechnik | Hydrogeologie | Akkreditiertes Prüflabor DIN EN 17025

Erschließung Baugebiet Wammesfeld, Öhringen

Geotechnischer Bericht

Ort: Öhringen

Auftraggeber: Stadtverwaltung Öhringen

Projektleiterin: M. Sc. B. H. La
GMP-Projektnr.: 223299\g1a La/fr
Datum: 27.03.2024

GMP - Geotechnik GmbH & Co. KG Beratende Ingenieure und Geologen | Hedanstraße 17 | 97084 Würzburg Telefon: 0931 61 44-0 | Fax: 0931 61 44-200 | mail: mail@gmp-geo.de | web: www.gmp-geo.de

Projektdokumentation

Datum	Index	Dokumentation	Gez.	Gepr.
14.03.2024	-	Gutachten erstellt	La	Fra
27.03.2024	а	Schreibfehler korrigiert, Kapitel Umwelttechnik ergänzt	La	Fra

Unterlagen: Käser Ingenieure GmbH + Co. KG:

- /1/ Bebauungsplan und örtliche Bauvorschrift,
 - M = 1:1.000, Stand 07.03.2024
- /2/ Umlegung "Wammesfeld" zu Teilungsflächen, M = 1:3.000, Stand 12.10.2023

Länderübergreifende Regelungen für die abfalltechnische Bewertung:

- /3/ "Verordnung über Anforderungen an den Einbau von mineralischen Ersatzbaustoffen in technische Bauwerke (Ersatzbaustoffverordnung)" vom 09.07.2021
- /4/ Verordnung über Deponien und Langzeitlager (DepV) vom 27.04.2009, zuletzt geändert am 09.07.2021
- /5/ Arbeitskreis Umweltfragen: RuVA-StB 01: "Richtlinien für die umweltverträgliche Verwertung von Ausbauasphalt mit teer-/pechtypischen Bestandteilen sowie für die Verwertung von Ausbauasphalt im Straßenbau"

Anlagen:

- 1. Übersichtslageplan, M = 1:25.000
- 2. Allgemeines Legendenblatt
- 3. Lagepläne der Aufschlüsse mit Tiefenprofilen und Rammdiagrammen, M = 1:750/1:100
- 4. Bilddokumentation Ansatzpunkte der Aufschlüsse
- 5. Bilddokumentation Schwarzdeckenkerne
- 6. Tabellen Bodenproben
- 7. Zusammenstellung der Laborversuche
- 8. Bestimmung des Wassergehaltes nach DIN EN ISO 17892-1
- 9. Bestimmung der Kornverteilung nach DIN EN ISO 17892-4
- 10. Bestimmung der Zustandsgrenzen nach DIN EN ISO 17892-12
- 11. Körnungsbänder

Anhang: CLG - Chemisches Labor Dr. Graser, Schonungen:

- Prüfbericht 2345954 vom 17.01.2024

AGROLAB Labor GmbH, Bruckberg

- Prüfbericht 3527919 387196 vom 15.03.2024
- Prüfbericht 3527919 387202 vom 15.03.2024
- Prüfbericht 3527919 387203 vom 15.03.2024
- Prüfbericht 3527924 387221 vom 26.03.2024
- Prüfbericht 3527924 387224 vom 26.03.2024
- Prüfbericht 3527924 387225 vom 26.03.2024
- Prüfbericht 3527924 387226 vom 26.03.2024
- Prüfbericht 3527924 387227 vom 26.03.2024
- Prüfbericht 3527924 387228 vom 26.03.2024

Inhaltsverzeichnis:

		Seite
1.	Vorgang	6
2.	Bauvorhaben und örtliche Verhältnisse	6
	2.1 Geotechnische Kategorie	
	2.2 Erdbebenzone	
	2.3 Frosteinwirkung	
	2.4 Schutzgebiet	
3.	Untergrunderkundung	8
	3.1 Einmessung der Aufschlusspunkte	
4.	Probenahme	10
	4.1 Geotechnische Probenahme	10
	4.2 Umwelttechnische Probenahme	10
5.	Untergrundverhältnisse	11
	5.1 Geologische Verhältnisse	11
	5.2 Oberboden	11
	5.3 Oberflächenbefestigung und Auffüllung (A)	11
	5.4 Lösslehme (q)	
	5.5 Verwitterungslehm (q/ku)	
6.	Hydrogeologische Verhältnisse	13
7.	Geotechnische Laborversuche	16
8.	Orientierende abfalltechnische Untersuchungen	16
	8.1 Bewertungsgrundlage	
	8.2 Durchgeführte Untersuchungen	
	8.3 Analysenergebnisse	
	8.3.1 Asphalt	
	8.3.2 Bodenmaterial	18
9.	Geotechnische Kenngrößen	20
10.	Geotechnische Empfehlungen	20
	10.1 Grundbautechnische Empfehlungen für die Verlegung der Kanäle	
	10.2 Kanalgrabensicherung	
	10.3 Wasserhaltung	
	10.4 Rohrbettung	
	10.5 Rohrgrabenverfüllung	

11.	Grundbautechnische Empfehlungen für den Ausbau der S	Straße24
	11.1 Tragfähigkeit des Planums	24
	11.2 Beurteilung der Frostsicherheit	
	11.3 Hinweise für die Bauausführung	
12.	Bewertung orientierende abfalltechnische Untersuchunge	n26
	12.1 Asphalt	
	12.2 Bodenmaterial	
13.	Homogenbereiche	27
	13.1 Geotechnische Klassifizierung	
	13.2 Schichteinteilung	
	13.3 Zahlenwerte Homogenbereiche DIN 18320	
	13.4 Zahlenwerte Homogenbereiche DIN 18300	
	13.4.1 Boden	
14.	Zusammenfassung weitergehende Empfehlungen	32
	14.1 Kanal und Straße	
	14.2 Empfehlungen zur weiteren Erkundung	
	14.3 Hinweise zur Planung, Ausschreibung und Durchfü	
	Entsorgungsmaßnahmen	32
	14.4 Empfehlungen zur geotechnischen Überwachung	34
	14.5 Empfehlungen zur umwelttechnischen Überwachung	ng35

1. Vorgang

Das Ingenieurbüro Käser Ingenieure GmbH + Co. KG in Untergruppenbach plant für die Große Kreisstadt Öhringen die Erschließung des Baugebiets Wammesfeld in Öhringen.

Die GMP - Geotechnik GmbH & Co. KG wurde mit Schreiben vom 08.12.2023 auf Grundlage des Angebotes vom 07.12.2023 mit der Baugrunduntersuchung sowie der Ausarbeitung des Geotechnischen Berichts beauftragt.

2. Bauvorhaben und örtliche Verhältnisse

Das zu erschließende Baugelände "Wammesfeld" schließt westlich des bestehenden Baugebietes "Flürle" an. Im Norden wird das Baugebiet von der Autobahn A 6 und im Süden durch die "Heilbronner Straße" begrenzt.

Für die Erschließung des Baugebiets wird an das Straßensystem des Baugebiets "Flürle" und der Westallee angeschlossen. Weiterhin wird die Infrastruktur für die Ver- und Entsorger vorgesehen. In der nordwestlichen Ecke des Baugebietes soll die Versickerung von Oberflächenwasser erfolgen.

Über die geplante Belastungsklasse der Straße sowie deren Höheneinstellung liegen keine weiteren Angaben vor, so dass im Weiteren von einer Höhenlage entsprechend der derzeitigen GOK ausgegangen wird.

Über die geplanten Kanäle und den zu erwartenden Durchmessern und Tiefen liegen keine Angaben vor. Es wird davon ausgegangen, dass diese in Tiefen zwischen 3,0 m - 4,0 m unter derzeitiger GOK verlegt werden.

2.1 Geotechnische Kategorie

Die geotechnische Kategorie gemäß DIN 4020 und DIN 1054 ist von der geplanten Bebauung abhängig. Bei Verkehrsflächen sowie den Kanalbaumaßnahmen sind die Baumaßnahmen in die Geotechnische Kategorie GK II einzustufen.

2.2 Erdbebenzone

Gemäß DIN EN 1998-1 liegt das Baugelände in keiner Erdbebenzone und keiner Untergrundklasse an.

2.3 Frosteinwirkung

Gemäß Karte der Frosteinwirkungszone nach RStO 12 liegt die Baumaßnahme in der Frostzone II. Damit ist ein Frostindex von Fi > 250 bis \le 330 [°C * d] anzusetzen. Daraus lässt sich eine Frosteindringung von ca. 80 cm - 90 cm abschätzen.

2.4 Schutzgebiet

Das Baugelände liegt in keinem Trinkwasser- oder Heilquellenschutzgebiet. Entlang des Hapbach befinden sich unterschiedliche Biotope.

Aus dem Umwelt Daten- und Kartendienst der Landesanstalt für Umwelt Baden-Württemberg können die geschützten Biotope entnommen werden. Nachfolgende Grafik fasst die Biotope im Baugebiet zusammen.

Bild 1: Geschützte Biotope im Baubereich

(Quelle: LUBW, BGL)

3. Untergrunderkundung

Zur Erkundung der Untergrundverhältnisse wurden im Baubereich 26 Rammkernsondierungen (RKS 1 - RKS 25) niedergebracht. Zur Festlegung der Lagerungsverhältnisse wurden zu jedem Aufschluss Sondierungen mit der schweren bzw. leichten Rammsonde (DPH 1 - DPH 23, DPL 1 - DPL 3) abgeteuft.

Für die Durchführung der Aufschlüsse wurden beim Umweltschutzamt des Landratsamtes Hohenlohe Kreis eine wasserrechtliche Genehmigung beantragt, die mit Schreiben vom 12.12.2023 erteilt wurde. Die Auflagen im Bescheid für die Baugrunduntersuchung wurden eingehalten und berücksichtig.

Die Ansatzpunkte der Aufschlüsse sind im Lageplan der Anlage 3.1 im Maßstab 1:2.000 eingetragen.

In den Anlagen 3.2 - 3.4 sind außerdem Tiefenprofile der Aufschlüsse eingezeichnet.

Rechts neben den Tiefenprofilen sind die angetroffenen Boden- und Felsarten mit Kurzzeichen nach DIN 4023 beschrieben. Angegeben sind außerdem die Farben der Böden und die geologischen Kennzeichnungen.

Die am Untersuchungstag angetroffenen Grund- und Sickerwasserstände sind links neben den Tiefenprofilen eingezeichnet. Dort sind außerdem die Nummern und Tiefen der entnommenen Bodenproben angegeben.

Die Anzahl der Schläge, die erforderlich ist, um die schwere bzw. leichte Rammsonde nach DIN EN ISO 22476-2:2012 (DPH/DPL) 10 cm in den Boden einzurammen, ist ebenfalls in den Anlagen 3.2 - 3.4 in den Rammdiagrammen aufgetragen.

Die verwendeten Signaturen der Tiefenprofile und die Kurzzeichen für Boden- und Felsarten sind in den Legenden der Anlage 2 erläutert. Fotos der Aufschlussstellen sowie der entnommenen Schwarzdeckenkerne sind in den Anlagen 4 und 5 beigefügt.

Aufgrund des sehr engen Zeitplanes bzw. der Artenschutzmaßnahmen wurden die Aufschlüsse in Abstimmung mit dem Stadtbauamt Öhringen im Bereich der Flächen der Stadt Öhringen durchgeführt.

Die Aufschlüsse wurden überwiegend im Bereich von Grünflächen ausgeführt (siehe Bilddokumentation, Anlage 4).

3.1 Einmessung der Aufschlusspunkte

Alle Erkundungspunkte wurden satellitengestützt mit dem Korrektursystem SAPOS HEPS eingemessen. Die Lage der Messpunkte wird als ETRS89-Koordinaten X und Y bestimmt und die Höhen im Bezugssystem DHHN2016 (Deutsches Haupthöhennetz 2016) in m NHN (Höhen über Normalhöhen-Null) gemessen. Zum ursprünglichen Gauß-Krüger und DHHN12-System ergeben sich Abweichungen, die regional unterschiedlich in einer Größenordnung von wenigen Zentimetern liegen.

Bei der Darstellung der Erkundungsergebnisse wird auf eine Umrechnung in andere Höhensystem (z.B. mNN) verzichtet. Dies ist bei der Planung und Festlegungen zu berücksichtigen.

Zur Referenzierung wurden im Rahmen der Einmessung weitere Punkte (Kanaldeckel 1 - Kanaldeckel 7) eingemessen. Die ermittelten Höhen in m NHN sind in den Lageplan mit eingetragen. Mögliche Abweichungen von gegebenen Höhen können zum einen auf die oben beschriebene Differenz zwischen den Höhensystemen zurückzuführen sein sowie auf die Messgenauigkeit des verwendeten Systems (ca. \pm 5 cm).

4. Probenahme

4.1 Geotechnische Probenahme

Zur Bestimmung wichtiger bodenphysikalischer Kennwerte wurden aus den Aufschlüssen Proben entnommen, die tabellarisch in der Anlage 6.1 zusammengestellt sind. Die Nummern und Tiefen der entnommenen Bodenproben sind außerdem neben den Tiefenprofilen der Anlage 3.2 - 3.4 angegeben.

Nach Sichtung und Beurteilung wurden an ausgewählten Proben Versuche im bodenmechanischen Labor von GMP durchgeführt (siehe Anlage tabellarische Zusammenstellung). Die Ergebnisse der Laborversuche sind in Anlage 7 zusammengestellt. Die
übrigen Proben werden rückgestellt und bei GMP eingelagert. Die Rückstellproben
werden bis drei Monate nach Abgabe des Gutachtens aufbewahrt und anschließend
fachgerecht entsorgt soweit keine längere Aufbewahrung durch den Auftraggeber gefordert wird.

4.2 Umwelttechnische Probenahme

Aus den Aufschlüssen wurden Asphaltdeckenkerne sowie Boden-/Materialproben für orientierende abfalltechnische Untersuchungen entnommen, im GMP-Labor gesichtet und abfalltechnisch beurteilt. Am Aufschluss RKS 23 wurde ca. 0,5 m unter aktueller Geländeoberkannte eine organoleptisch auffällige, alte Schwarzdecke angetroffen. Zum Zeitpunkt der Probenahme wurden keine weiteren Fremdbestandteile oder geruchliche Auffälligkeiten festgestellt.

Die entnommenen Asphaltdeckenkern mit durchgeführter Analytik sind in Tabelle 2 der Anlage 6 aufgeführt.

In der Tabelle 3 der Anlage 6 sind die für orientierende abfalltechnische Untersuchungen entnommenen Boden-/Materialproben mit der Angabe der Verwendung für die Mischprobenerstellung sowie der durchgeführten Analytik zusammengestellt.

5. Untergrundverhältnisse

5.1 Geologische Verhältnisse

Nach dem Ergebnis der Baugrunderkundung sind im Untergrund vollständig verwitterte Festgesteine des Unteren Keuper in Form von Verwitterungslehm vorhanden. Dieser wird von Lösslehm überlagert. Den Geländeabschluss bilden im Bereich der Grünflächen Auffüllungen und Oberboden, im Bereich der Verkehrsflächen der Straßenoberbau. Vereinfacht lässt sich der Untergrund aus geotechnischer Sicht zu folgendem Modell zusammenfassen:

- 1. Oberboden (Mu)
- 2. Oberflächenbefestigung und Auffüllung (A)
- 3. Lösslehme (q)
- 4. Verwitterungslehm (vollständig verwitterter Unterer Keuper) (q/ku)

Die genaue Schichtenfolge kann den Tiefenprofilen der Anlagen 3.2 - 3.4 entnommen werden.

5.2 Oberboden

Die Aufschlüsse wurden überwiegend auf Grünflächen abgeteuft. Es wurde Oberboden mit einer Mächtigkeit von 0,10 m - 0,40 m angetroffen. Oberboden wird nach DIN 4023 mit dem Kurzzeichen Mu gekennzeichnet.

In der bodenkundlichen Beschreibung wurde mit den Feinerkundungen eine Mächtigkeit von 0,3 m bis 0,5 m erkundet. Bei der Erkundung für das geotechnische Gutachten wurde teilweise nur 0,1 m angetroffen, da die Erkundungen teilweise auf den Wirtschaftswegen stattgefunden haben. Als mittlere Mächtigkeit ist 0,40 m in den landwirtschaftlich genutzten Flächen anzusetzen.

5.3 Oberflächenbefestigung und Auffüllung (A)

Die Aufschlüsse RKS 1 und RKS 21 wurden im Bereich von Verkehrsflächen ausgeführt, so dass zunächst die Schwarzdecke mit einem Kernbohrgerät d = 100 mm durchkernt werden musste. Hierbei wurden folgende Mächtigkeiten des Straßenoberbaus festgestellt:

Tabelle 1: Schichtstärken Straßenoberbau

Aufschluss	Gesamtdicke	Schichtstärken	Bemerkung
RKS 1	70 cm	24 cm Schwarzdecke 46 cm Mineralstoffgemisch	
RKS 21	60 cm	21 cm Schwarzdecke 39 cm Mineralstoffgemisch	

Unterhalb des Straßenoberbaus bzw. dem Oberboden wurden in der Rammkernsondierung RKS 21 und 23 weitere Auffüllungen angetroffen. Diese wurden als tonigsandig-kiesige Lehme mit unterschiedlichen Beimengungen angetroffen (Kurzzeichen nach DIN 4023: U, t, g, s). Im Bereich der RKS 23 wurde zudem in 0,5 m unter GOK eine zerbohrte 10 cm mächtige alte Schwarzdecke erkundet.

Die Schlagzahlen der schweren Rammsonde erreichten im Straßenoberbau Werte von

$$35 \ge N_{10,DPH} \le 235$$
,

was in etwa den Erfahrungswerten einer sehr dichten Lagerung entspricht.

In den weiteren Auffüllungen wurden Schlagzahlen mit der schweren Rammsonde zwischen

$$1 \ge N_{10,DPH} \le 48$$

erreicht, was im Bereich der RKS 23 auf eine unzureichende Verdichtung der Auffüllung schließen lässt und im Bereich der RKS 21 die Konsistenzansprache vor Ort einer festen Konsistenz bestätigt.

5.4 Lösslehme (q)

Unter dem Oberboden bzw. den Auffüllungen folgen Lösslehme. Diese bestehen aus Schluff mit sandig-tonigen Beimengungen (U, s, t/U, t, s). Bereichsweise wurden organische Beimengungen angetroffen (RKS 14, RKS 12, RKS 23).

Die Basis der Lösslehme wurde im nördlichen Bereich (RKS 2 - RKS 17) bei ca. 4,7 m (RKS 2) bis 6,5 m (RKS 5, RKS 15) erkundet, während im südlichen Bereich (RKS 18 - RKS 23) bis zur Aufschlussendtiefe von maximal 7,0 m unter GOK noch weiche Lehme angetroffen wurden.

Die Konsistenzansprache vor Ort variiert in dem oberen Bereich von weich bis halbfest, mit zunehmender Tiefe von steif bis weich. Bereichsweise haben die Lehme unterhalb des Grundwasserspiegels auch eine breiige Konsistenz (RKS12 / RKS14).

Überwiegend steigen die Schlagzahlen in den Lehmen mit zunehmender Tiefe linear an. Der lineare Anstieg ist nicht auf eine Zunahme der Konsistenz, sondern auf eine Mantelreibung am Gestänge zurückzuführen. Es wurden im Mittel Schlagzahlen von ca.

$$1 \ge N_{10} \le 10$$

erreicht. Dies Schlagzahlen liegen unterhalb den Erfahrungswerten von steifen bis halbfesten Lehmen liegt. Es ist von einer hohen Struktur- und Wasserempfindlichkeit der Lösslehme auszugehen.

5.5 Verwitterungslehm (q/ku)

Unter den Lösslehmen folgt der Verwitterungshorizont des Unteren Keupers. Hier liegen vollständig zersetzte verwitterte Tonsteine als Verwitterungslehm vor. Die Schichtoberkante wurde im nördlichen Bereich in Tiefen von 4,7 m - 6,5 m erkundet, während im südlichen Bereich die Oberkante bis in den 7,0 m unter GOK abgeteuften Sondierungen nicht mehr festgestellt wurde. In den Tiefenprofilen wird dieser Lehm als vollständig verwitterter Tonstein dargestellt.

6. Hydrogeologische Verhältnisse

Am Tag der Baugrunderkundung wurden in unterschiedlichen Tiefen schwebende Grundwasserspiegel angetroffen. Dabei konnte der Außendienst vor Ort bereichsweise in den Aufschlüssen einen Anstieg erkennen.

Ein zusammenhängender Grundwasserspiegel ist aus hydrogeologischer Sicht in der Erkundungstiefe von bis zu 7.,0 m nicht vorhanden. Aufgrund der Untergrundverhältnisse muss damit gerechnet werden, dass sich in den Lösslehmen temporäre schwebende Grundwasserhorizonte ausbilden können. Bedingt durch die Topographie ("Bergrücken") ist ein Abfließen dieser temporären Grundwässer in Richtung Osten, Süden und Norden vorhanden.

Da sich diese schwimmenden Grundwasserspiegel als Stauhorizonte in den Lösslehmen ausbilden und lokal begrenzt sind, können keine Angaben über Zuflussraten oder Bemessungswasserspiegel gegeben werden.

Die Tabelle 2 fasst die angetroffenen Grundwasserspiegel zusammen.

Tabelle 2: beobachtete Grundwasserspiegel

		Grundy	vasser	
Aufschluss	OK Gelände [m NHN]	angebohrt [m u GOK] [m NHN]	eingespiegelt [m u GOK] [m NHN]	Bemerkungen
RKS 2	250,57	1,60 248,97	n.b.	Wasserspiegel eingemessen am 20.12.2023, Anstieg, Einspiegelung nicht gemessen
RKS 3	247,56	1,60 245,96	n.b.	Wasserspiegel eingemessen am 20.12.2023, Anstieg, Einspiegelung nicht gemessen.
RKS 4	244,00	1,40 242,60	n.b.	Wasserspiegel eingemessen am 20.12.2023, Anstieg, Einspiegelung nicht gemessen.
RKS 5	242,11	0,60 241,51	n.b.	Wasserspiegel eingemessen am 20.12.2023, Anstieg, Einspiegelung nicht gemessen.
RKS 6	240,61	1,00 239,61		Grundwasser eingemessen am 20.12.2023, kein Anstieg
RKS 8	237,99	0,90 237,09	n.b.	Wasserspiegel eingemessen am 20.12.2023, Anstieg, Einspiegelung nicht gemessen
RKS 9	237,33	1,00 236,33	n.b.	Wasserspiegel eingemessen am 20.12.2023, Anstieg, Einspiegelung nicht gemessen.
RKS 10	236,39	1,45 234,94		Grundwasser eingemessen am 21.12.2023, kein Anstieg
RKS 11	235,68	1,80 233,88		Wasserspiegel eingemessen am 21.12.2023, kein Anstieg
RKS 12	234,76	0,90 233,86	n.b.	Wasserspiegel eingemessen am 21.12.2023, Anstieg bis auf 0,73 m bzw. 234,03 m NHN, Einspiegelung nicht eingemessen
RKS 13	235,75	1,20 234,55	n.b.	Wasserspiegel eingemessen am 21.12.2023, Anstieg bis auf 0,93 m bzw. 234,82 m NHN, Einspiegelung nicht gemessen

		Grundv	vasser	
Aufschluss	OK Gelände [m NHN]	angebohrt [m u GOK] [m NHN]	eingespiegelt [m u GOK] [m NHN]	Bemerkungen
RKS 14	238,02	1,60 236,42	n.b.	Wasserspiegel eingemessen am 19.12.2023, Anstieg, Einspiegelung nicht gemessen
RKS 15	238,60	1,60 237,00		Wasserspiegel eingemessen am 19.12.2023, kein Anstieg
RKS 16	239,81	1,60 238,21		Wasserspiegel eingemessen am 13.12.2023, kein Anstieg
RKS 17	240,92	1,60 239,32	n.b.	Wasserspiegel eingemessen am 13.12.2023, Anstieg, Einspiegelung nicht gemessen
RKS 18	241,67	3,70 237,97		Wasserspiegel eingemessen am 13.12.2023, kein Anstieg
RKS 19	241,25	1,30 239,95		Wasserspiegel eingemessen am 14.12.2023, kein Anstieg
RKS 20	242,98	3,30 239,68	2,30 240,68	Wasserspiegel eingemessen am 14.12.2023, Anstieg bis auf 2,30 m bzw. 240,68 m NHN
RKS 22	242,57	2,00 240,57		Wasserspiegel eingemessen am 13.12.2023, kein Anstieg
RKS 23	244,71	2,40 242,31		Wasserspiegel eingemessen am 13.12.2023, kein Anstieg
RKS 24	244,44	0,35 244,09	n.b.	Wasserspiegel eingemessen am 13.12.2023, Anstieg, Einspiegelung nicht gemessen

Bauchemische Wasseranalyse

Aus dem Aufschluss RKS 23 wurde in 2,4 m unter GOK eine Grundwasserprobe entnommen und bauchemisch analysiert.

Die Ergebnisse der Wasseruntersuchung nach DIN 4023 zur Beurteilung betonangreifende Wässer sind dem Prüfbericht des Chemischen Labors im Anhang beigelegt und in der nachfolgenden Tabelle aufgeführt.

Tabelle 3: Untersuchungsergebnisse der Grundwasseranalyse

Aufschluss	Probenahmetiefe [m u. GOK]	Prüfbericht	Betonangriff	ursächlicher Parameter
RKS 23	2,4	2345954	nicht betonaggressiv	

7. Geotechnische Laborversuche

Zur Bestimmung wichtiger bodenphysikalischer Eigenschaften wurden an repräsentativ ausgewählten Bodenproben im geotechnischen Labor Versuche entsprechend folgender Normen ausgeführt:

Tabelle 4: Normung Laborversuche

Art	Versuch	Norm	Ausgabe
	Bestimmung des Wassergehalts	DIN EN ISO 17892 - 1	08-2022
	Bestimmung der Korngrößenverteilung	DIN EN ISO 17892 - 4	04-2017
Dadas	Bestimmung der Fließ- und Ausrollgrenzen	DIN EN ISO 17892 - 12	10-2018
Boden	Konsistenz und Plastizität	DIN EN ISO 14688 - 2	11-2020
	Bestimmung der Schrumpfgrenze	DIN 18122 - 2	11-2020
	Klassifizierung	DIN 18196	05-2011
Wasser	Betonaggressivität	DIN 4030-1	06-2008

Die Ergebnisse der Laborversuche sind in Anlage 7 ff zusammengefasst und aufgetragen.

8. Orientierende abfalltechnische Untersuchungen

8.1 Bewertungsgrundlage

Zur orientierenden umwelttechnischen Bewertung werden folgende Bewertungsgrundlagen herangezogen:

 "Verordnung über Anforderungen an den Einbau von mineralischen Ersatzbaustoffen in technische Bauwerke (Ersatzbaustoffverordnung)" vom 09.07.2021/3/

Nachfolgend: EBV

- Verordnung über Deponien und Langzeitlager (DepV) vom 27.04.2009, zuletzt geändert am 09.07.2021 /4/
 Nachfolgend: DepV
- Arbeitskreis Umweltfragen: RuVA-StB 01: "Richtlinien für die umweltverträgliche Verwertung von Ausbauasphalt mit teer-/pechtypischen Bestandteilen sowie für die Verwertung von Ausbauasphalt im Straßenbau" /5/Nachfolgend: RuVA-StB 01

8.2 Durchgeführte Untersuchungen

Zur Erhöhung der Planungssicherheit und für die Ausschreibung der Baumaßnahme wurden orientierende abfalltechnische Untersuchungen an Einzel- und Mischproben durchgeführt. Die Mischproben wurden anhand der Erkenntnisse aus der Probensichtung aller Einzelproben aufgrund ähnlicher Materialbeschaffenheit (z.B. Fremdbestandteile) sowie deren räumlichen Bezug zueinander zusammengestellt. Die für die Herstellung der Mischproben verwendeten Einzelproben sind in Tabelle 3 der Anlage 6 aufgeführt.

Die Mischproben aus den Auffüllungen und dem natürlichen Untergrund wurden auf den Parameterumfang der EBV für BM-0* in der Feinfraktion < 2 mm laboranalytisch untersucht. Die Asphaltdeckenkerne sowie die zerbohrte alte Schwarzdecke wurden auf den Parameter polycyclische aromatische Kohlenwasserstoffe (PAK) im Feststoff und den Phenolindex im Eluat laboranalytisch untersucht. Die chemischen Analysen wurden von dem nach DIN EN ISO/IEC 17025 akkreditierten Labor AGROLAB Labor GmbH, Bruckberg durchgeführt.

Die Aufschlüsse wurden in Abständen von ca. 50 - 80 m niedergebracht.

Die Misch- bzw. Einzelproben werden für einen Zeitraum von sechs Wochen nach Datum des Prüfberichtes (Laborproben) bzw. drei Monaten nach Erstellung des Gutachtens (Rückstellproben GMP) zurückgestellt. Die Rückstellfristen können gegebenenfalls nach vorheriger Anmeldung verlängert werden.

8.3 Analysenergebnisse

8.3.1 Asphalt

Die Prüfergebnisse der laboranalytischen Untersuchungen der Asphaltdeckenkerne sind in der nachfolgenden Tabelle zusammengefasst. In der Tabelle wird die Entnahmetiefe, der Gehalt an polycyclischen aromatischen Kohlenwasserstoffen (PAK) im Feststoff, der Gehalt an Benzo(a)pyren im Feststoff, der Phenolindex im Eluat sowie die orientierende abfalltechnische Einstufung gemäß RuVA-StB 01 angegeben.

Tabelle 5: Orientierende abfalltechnische Einstufung von Asphaltkernen

Probe (Entnahmetiefe)	PAK- Gehalt [mg/kg]	Benzo(a)pyren [mg/kg]	Phenolindex im Eluat [mg/l]	Einstufung gem. RuVA-StB 01
RKS 1 (0,0 – 0,24 m)	0,6	0,05	<0,01	А
RKS 21 (0,0 – 0,21 m)	1,3	0,1	<0,01	А
<u>RKS 23</u> (0,5 – 0,6 m)	<u>2.900*</u>	<u>85*</u>	<0,01	<u>B</u>

PAK: Polycyclische aromatische Kohlenwasserstoffe; BaP: Benzo(a)pyren, PAK-Einzelstoff

n.b.: bei Bestimmungsgrenze nicht quantifizierbar

Einstufung gem. RuVA-StB 01:

A: Ausbauasphalt Verwertungsklasse A (PAK ≤ 25 mg/kg)

B,C: Ausbaustoffe mit teer-/pechtypischen Bestandteilen, Verwertungsklassen B,C (PAK > 25 mg/kg)

8.3.2 Bodenmaterial

Die Prüfergebnisse der laboranalytischen Untersuchungen der Boden-/Materialproben aus den Auffüllungen und dem natürlichen Untergrund sind in der nachfolgenden Tabelle zusammengefasst. In der Tabelle werden die Entnahmetiefe, die Materialbeschreibung, die orientierende abfalltechnische Einstufung gemäß EBV, Hinweise für eine maßnahmeninterne Verwertung sowie die für die Einstufung maßgeblichen Parameter angegeben.

^{*:} Gefährlicher Abfall.

Tabelle 6: Orientierende abfalltechnische Einstufung von Aushubmateria-

Probe	Probe		e abfalltechnische nstufung	Verwertung
(Entnahmetiefe)	Material	EBV	maßgebl. Parameter	(nach EBV) ¹
MP 1 RKS 2-4+6 (0,2 – 3,0 m)	Nat. Untergrund: Löss + Schluff, feinsandig, tonig	BM-0 Lehm/Schluff		Ja
MP 2 RKS 12+13 (0,3 – 2,3 m)	<u>Nat. Untergrund:</u> Löss	BM-0 Lehm/Schluff		Ja
MP 3 RKS 21 (0,6 – 1,1 m)	Auffüllung: Schluff, feinsandig, tonig, kiesig	BM-0	ELF 993 μS/cm ²	Ja
MP 4 RKS 18+22 (0,2 – 1,6 m)	<u>Nat. Untergrund:</u> Löss	BM-0 Lehm/Schluff	1	Ja
MP 5 RKS 23 (0,1 – 1,0 m)	Auffüllung: Schluff, tonig, kiesig, schwach feinsandig	>BM-F3	PAK 140 mg/kg BAP 13 mg/kg PAK 3,2 µg/l	Nein. Hinweise Kapitel 12.2 beachten
MP 6 RKS 24 – 26 (0,1 – 2,0 m)	<u>Nat. Untergrund:</u> Löss	BM-F2	PAK 8,6 mg/kg BAP 0,74 mg/kg	Ja EBV, Anlage 2, Ta- belle 7 beachten

EBV: "Verordnung über Anforderungen an den Einbau von mineralischen Ersatzbaustoffen in technische Bauwerke (Ersatzbaustoffverordnung)" vom 09.07.2021

ELF: Elektrische Leitfähigkeit
PAK: Polycyclische aromatische Kohlenwasserstoffe (Summe gem. EPA); BAP: Benzo(a)pyren (PAK-Einzelstoff)

1: Bewertet wird nur die abfallrechtliche, nicht die bautechnische Eignung.

2: Die erhöhte elektrische Leitfähigkeit ist nach EBV ein stoffspezifischer Orientierungswert und damit nicht einstufungsrelevant. Der erhöhte Gehalt ist mutmaßlich auf eine Bodenverbesserung zurückzuführen.

9. Geotechnische Kenngrößen

Nach den Ergebnissen der Aufschlüsse und Laborversuche sowie den Erfahrungen des Gutachters können für erdstatische Berechnungen die nachfolgenden charakteristischen Bodenkennwerte angesetzt werden.

Tabelle 7: Charakteristische Bodenkennwerte

Baugrund	Wichte γ _k [kN/m³]	Wichte unter Auftrieb γ' _k [kN/m³]	Reibungs- winkel φ'k [°]	C'k [kN/m²]	Steifemodul ¹⁾ (min - max) E _s [MN/m²]
Auffüllungen	19,0	9,0	27,5	0	10 - 12 (bindig) 30 - 40 (Straßenoberbau)
Lösslehme	20,0	10,0	27,5	8 - 10	10 - 12
vollständig verwitterter Unterer Keuper	21,0	11,0	32,5	10 - 15	30 - 50

¹⁾ in Abhängigkeit vom Spannungsbereich (150 – 300 kN/m²)

10. Geotechnische Empfehlungen

10.1 Grundbautechnische Empfehlungen für die Verlegung der Kanäle

Die Tiefenlage der Kanalsohle ist zum Zeitpunkt der Gutachtenerstellung nicht bekannt. Aus den Erfahrungen der Planung im bereits untersuchten Bereich im östlich angrenzenden Baugebiet "Galgenfeld III" ist davon auszugehen, dass die Sohllage zwischen 3,0 m und 4,0 m unter GOK zu liegen kommt.

10.2 Kanalgrabensicherung

Die Art und Wahl der Kanalgrabensicherung ist maßgebend abhängig von dem Wasserandrang während der Bauausführung. Zum Zeitpunkt der Untergrunderkundung wurden Grundwasserhorizonte in verschiedenen Tiefen festgestellt. Dabei haben die im Baufeld vorhandenen Lehme bereichsweise eine weiche bis breiige Konsistenz (RKS 12, RKS 14). Bei diesen Verhältnissen muss beim Aushub des Rohrgrabens eine kontinuierliche Stützung der Grabenwände gewährleistet werden. Der Kanalgraben müsste somit durch einen Verbau im Absenkverfahren (z.B. Gleitschienen oder Kammerdielenverbau) gesichert werden.

Für den Verbau ist ein erdstatischer Nachweis vorzulegen. Auf die DIN 4124 wird ausdrücklich hingewiesen.

Alternativ kann der Kanalgraben bei Rückgang des Wasserandrangs und unter Berücksichtigung der DIN 4124 geböscht hergestellt werden. Voraussetzung ist eine steife bis feste Konsistenz der Lehme. In den Lösslehmen und dem vollständig verwitterten Fels des Unteren Keupers können dabei Böschungswinkel von 60° angenommen werden.

10.3 Wasserhaltung

In den Bereichen, in denen schwebende Grundwasserspiegel angetroffen werden, muss zur fachgerechten Verlegung der Kanäle eine Wasserhaltung ausgeführt werden. Das anfallende Wasser kann mit einer offenen Wasserhaltung über Baudrainagen und Pumpensümpfe einer geeigneten Vorflut zugeführt werden.

10.4 Rohrbettung

Es wird davon ausgegangen, dass die Rohrsohlen auf ca. 3,0 m - 4,0 m unter GOK verlegt werden. In dieser Tiefe wurden Lösslehme mit unterschiedlichen Konsistenzen erkundet. In den Lehmen ist eine Stabilisierung zur Herstellung einer geeigneten Rohrbettung notwendig.

Die Mächtigkeit des Austausches ist abhängig von verschiedenen Faktoren wie z.B. Durchmesser und Gefälle der Rohrleitung, so dass hierzu derzeit keine genauen Angaben gemacht werden können. Art und Umfang der erforderlichen Stabilisierung sollten daher gegebenenfalls vor Ort bei Bauausführung festgelegt werden.

Für die Massenermittlung sollte im Bereich von halbfesten steifen Lehmen von ca. 0,2 m - 0,3 m ausgegangen werden, die im Bereich von weichen Lehmen auf 0,3 m - 0,4 m verstärkt werden müsste.

Als Material für den Austausch kann ein Baustoffgemisch der Körnung 0/32 mm bzw. 0/56 mm nach aktueller TL SoB-StB 20 verwendet werden.

Sollten in der Grabensohle sehr weiche Schichten vorhanden sein, so müsste vor dem Einbringen des Mineralbetons Schotter mit einer Körnung von 60/120 mm statisch, z.B. mit dem Baggerlöffel, in den Untergrund eingedrückt werden.

10.5 Rohrgrabenverfüllung

Der Rohrgraben sollte gemäß den Hinweisen für das Zufüllen von Leitungsgräben im Straßenkörper nach ZTVA-StB 12 in der Leitungszone entsprechend den Vorgaben der jeweiligen Leitungsbetreiber verfüllt werden.

Für die Verfüllung des restlichen Kanalgrabens sollte geeignetes, gut verdichtbares und gut tragfähiges Material verwendet werden, das lagenweise einzubringen und zu verdichten ist. Die Dicke der einzelnen Lagen ist gemäß ZTVA-StB in Abhängigkeit von der Bodenart und dem Verdichtungsgerät zu wählen.

Für die Verdichtung sollten folgende Verdichtungskriterien eingehalten und nachgewiesen werden:

Tabelle 8: Verdichtungskriterien

Schicht	Verdichtungskriterium			
Schich	bis 1,0 m unter OK Planum	> 1,0 m unter OK Planum		
Proctordichte	≥ 100 %	≥ 98 %		
Luftporengehalt	< 6 - 12 % ¹⁾	< 6 - 12 % ¹⁾		
Tragfähigkeit E _{v2}	≥ 45 MN/m²			

Gem. ZTVE sind die Anforderungen an den Luftporenanteil abhängig von der Art des Verfüllbodens. Bei wasserempfindlichen gemischt- und feinkörnigen Böden ist der Luftporenanteil auf 8%, bei Einbau von veränderlich festen Gesteinen auf 6% zu begrenzen. Diese Anforderungen sind mit in das I V aufzunehmen.

Die beim Aushub anfallenden Lösslehme sind dabei für die Wiederverfüllung ohne Zusatzmaßnahmen nicht geeignet. Bei Verwendung dieses Materials ist eine ausreichende Verdichtung aufgrund des hohen Wassergehaltes nicht möglich, so dass Setzungen in einer Größenordnung von mehreren Zentimetern auftreten, die auch erst nach einigen Monaten bzw. Jahren vollständig abgeklungen sind. Soll das Material dennoch wieder verwendet werden, ist eine Aufbereitung mit Bindemittel notwendig. Angaben hier können aus dem Kapitel 11.1 entnommen werden.

Das Fremdmaterial muss so beschaffen sein, dass die in der Tabelle 6 angegebenen Verdichtungskriterien erreicht werden können. Empfohlen wird ein weitgestuftes Material mit nur geringen Feinanteilen (z.B. Bodengruppe GW gemäß DIN 18196). Vor der Rückverfüllung des Rohrgrabens ist das vorgesehene Material durch den Bodengutachter freizugeben.

Das für die Verfüllung der Rohrgräben vorgesehene Material sollte vom Baugrundgutachter vor dem Einbau auf Eignung überprüft werden.

Im Straßenbereich ist die Kanalgrabenverfüllung so zu verdichten, dass im Planum der Straße ein Tragfähigkeitsbeiwert von $E_{\nu 2} > 45$ MN/m² erreicht wird.

Um eine dauerhafte Drainagewirkung innerhalb des Rohrgrabens zu verhindern, sollte in Abständen von 20 m bis 25 m über die komplette Höhe und Breite des Rohrgrabens ein Sperrriegel aus lehmig-tonigem Material eingebracht werden.

11. Grundbautechnische Empfehlungen für den Ausbau der Straße

Genaue Angaben über die geplante Höheneinstellung der Straßen liegen nicht vor. Es wird aber davon ausgegangen, dass die Oberkante der geplanten Straße in etwa auf derzeitiger GOK liegt.

11.1 Tragfähigkeit des Planums

In den Bereichen, in denen die Oberkante der Straße auf bzw. unter derzeitiger GOK liegt, dürften bei einer angenommenen Mächtigkeit des Straßenoberbaus von ca. 60 cm - 70 cm auf Höhe des Planums überwiegend Lösslehme vorhanden sein.

Gemäß ZTVE-StB bzw. RStO muss auf Höhe des Straßenplanums eine Tragfähigkeit von $E_{v2} \ge 45$ MN/m² gewährleistet werden. Bei den vorhandenen Untergrundverhältnissen ist ein E_{v2} -Wert von 10 - 15 MN/m² zu erwarten. Daher ist eine Ertüchtigung des Planums erforderlich. Bei den vorhandenen Untergrundverhältnissen und Randbedingungen wird empfohlen, die Ertüchtigung durch eine Stabilisierung mit hydraulischem Bindemittel auszuführen.

Die genaue Mächtigkeit des Austausches ist abhängig von verschiedenen Faktoren. Im Wesentlichen auch von den Witterungsverhältnissen vor und während der Bauausführung, so dass endgültige Angaben erst nach Anlegen von Probefeldern und Ausführung von Plattendruckversuchen gemacht werden können.

Bei den zum Zeitpunkt der Baugrunduntersuchung festgestellten Verhältnissen kann davon ausgegangen werden, dass auf den Lehmen eine Stabilisierung von ca. 30 cm - 40 cm erforderlich wird.

Wird ein Bodenaustausch durchgeführt, muss vor dem Einbringen der Stabilisierung auf das vorhandene Planum ein Geotextil der Robustheitsklasse GRK 4V (Flächengewicht ca. 250 - 300 g/m²) verlegt werden. Das Geotextil verhindert ein Eindringen von Feinteilen aus dem Untergrund in die Stabilisierungsschicht, die damit geringer tragfähig werden würde. Auf das Geotextil kann dann das Fremdmaterial in Lagen aufgebracht und verdichtet werden.

Als Material empfehlen wir, die Körnung 0/56 mm nach aktueller TL SoB-StB 20.

Alternativ zu einem Bodenaustausch kann die Stabilisierung auch durch Einfräsen von Bindemittel erfolgen. Die Mächtigkeit der Stabilisierung ist in etwa in der gleichen Größenordnung anzusetzen wie bei einem Bodenaustausch. Die genaue Bindemittelart und -menge ist abhängig vom Wassergehalt während der Bauzeit und kann daher je nach Jahreszeit und Witterungsverhältnissen variieren. Bei den bei der Baugrunduntersuchung festgestellten Wassergehalten muss davon ausgegangen werden, dass ca. 3 - 5 Gew.-% an Bindemitteln zugegeben werden müssen (entspricht ca. 50 - 90 kg/m³). Im Bereich von halbfesten Lehmen kann (z.B. bei trockenen Verhältnissen) ein dosiertes Befeuchten des Planums erforderlich werden, damit genügend Feuchtigkeit vorhanden ist, damit das Bindemittel abbinden kann.

Im Bereich der Kanalgrabenverfüllung ist von 1 - 2 Gew.-% auszugehen. Eine genaue Festlegung ist erst im Zuge der Ausführung möglich.

11.2 Beurteilung der Frostsicherheit

Nach den durchgeführten Baugrunduntersuchungen sind im Planum der Straße überwiegend Lösslehme vorhanden.

Nach den durchgeführten Untersuchungen sind diese Böden nach DIN 18196 als leicht- bis mittelplastische Tone mit dem Gruppensymbol TL bzw. TM zu bezeichnen. Diese Böden sind sehr frostempfindlich und somit nach ZTVE-StB in die Frostempfindlichkeitsklasse F 3 einzuordnen.

In den Bereichen, in denen eine Stabilisierung des Planums erforderlich wird, ist die Mächtigkeit der Frostschutzschicht abhängig von der Frostempfindlichkeit der stabilisierten Schicht. Bei einem Bodenaustausch mit einer Mächtigkeit von mindestens 20 cm kann bei Verwendung von geeignetem, frostsicherem Material die Frostschutzschicht nach der Klasse F2 ausgelegt werden.

Eine Bodenverbesserung mit Bindemittel hat nur einen geringen Einfluss auf die Frostempfindlichkeit, so dass in diesem Fall die Frostschutzschicht nach der Klasse F3 ausgelegt werden muss. Eine Einstufung in Frostempfindlichkeitsklasse F2 ist nur bei Ausführung einer qualifizierten Bodenverbesserung nach dem "Merkblatt über Bodenverfestigung und Bodenverbesserung mit Bindemittel" und einem entsprechend höherem Bindemittelgehalt möglich.

11.3 Hinweise für die Bauausführung

Sollte die Baumaßnahme nach länger anhaltenden Nässeperioden ausgeführt werden, können die bei der Baugrunduntersuchung im Erdplanum der Straße angetroffenen bindigen Lösslehme eine geringere Konsistenz besitzen. In diesem Fall müssten zur Erreichung einer ausreichenden Tragfähigkeit des Planums zusätzliche Maßnahmen durchgeführt werden, deren Art und Umfang vor Ort festzulegen sind.

Bei einem Befahren der Lehme mit Rad- oder Kettenladern kann das Planum so in der Struktur gestört werden, dass es "aufweicht" und geringer tragfähig wird. Es wird daher empfohlen, die notwendigen Erdarbeiten mit einem Bagger vor Kopf auszuführen und die Stabilisierungsschicht entsprechend auch vor Kopf einzubringen.

12. Bewertung orientierende abfalltechnische Untersuchungen

12.1 Asphalt

Das Schwarzdeckenmaterial aus den **Aufschlüssen RKS 1** und **RKS 21** ist **nicht** teer- bzw. pechhaltig. Es handelt sich damit in diesen Bereichen um bitumenhaltigen Ausbauasphalt ohne teerhaltige Inhaltsstoffe und ist nach RuVA-StB 01 in die Verwertungsklasse A einzuordnen. Das Material kann somit nach Ausbau prinzipiell ohne Auflagen wieder verwertet werden. In Übereinstimmung mit den Merkblättern der FGSV und nach den Technischen Regeln der Länderarbeitsgemeinschaft Abfall (LAGA) ist Ausbauasphalt möglichst hochwertig im Heißmischgut einzusetzen.

Teerhaltiger Straßenaufbruch mit PAK-Gehalten über 200 mg/kg bzw. einem Benzo(a)pyren- Gehalt über 50 mg/kg (**Aufschluss RKS 23, alte Schwarzdecke** direkt neben Straße L1036) entsprechend der LAGA "Technische Hinweise zur Einstufung von Abfällen nach ihrer Gefährlichkeit" sowie dem Schreiben des Ministeriums für Umwelt, Klima und Energiewirtschaft Baden-Württemberg "Einstufung von Abfällen nach ihrer Gefährlichkeit" vom 14.06.2019 als **gefährlicher Abfall** eingestuft.

Bei der Verwertung/Entsorgung von teerhaltigem Straßenaufbruch sind der Leitfaden des Ministeriums für Umwelt und Verkehr Baden-Württemberg "Leitfaden zum Umgang mit teerhaltigem Straßenaufbruch", die TRGS 551 "Teer und andere Pyrolyseprodukte aus organischem Material" sowie die abfallrechtlichen Regelungen für gefährliche Abfälle zu beachten.

Grundsätzlich können sich die Abfallerzeuger von den Nachweispflichten gem. § 26 Abs. 1 NachwV durch die SAA Sonderabfallagentur Baden-Württemberg befreit werden.

12.2 Bodenmaterial

Das durch die Mischprobe MP 5 RKS 23 (0,1 – 1,0 m) charakterisierte Bodenmaterial aus dem Bereich der Einfahrt auf den Feldweg von der L1036 kommend überschreitet die Grenzwerte der EBV für den Parameter PAK und ist damit als >BM-F3 einzustufen. Orientierend auf Grundlage der Analytik in der Feinfraktion < 2 mm ist das Material als DKI gemäß DepV einzustufen.

Das durch die Mischprobe MP 6 RKS 24 – 26 (0,1 – 2,0 m) charakterisierte Bodenmaterial aus dem Böschungsbereich der L1036 weist ebenfalls erhöhte PAK-Gehalte im Bereich von BM-F2 gemäß EBV auf. Die Verwertungsmöglichkeiten ergeben sich aus der Tabelle 7 der Anlage 2, EBV: Es kann vermutet werden, dass die Verunreinigung mit PAK im Bereich der L1036 auf voller Länge auf die am Aufschluss RKS 23 angetroffenen alte Schwarzdecke zurückzuführen ist.

Alle weiteren untersuchten Bodenmaterialien halten die Werte für BM-0 gemäß EBV ein und können somit aus umwelttechnischer Sicht uneingeschränkt verwertet werden.

13. Homogenbereiche

13.1 Geotechnische Klassifizierung

Nach der aktuellen Norm (VOB/C, September 2019) sind die bekannten Bodenklassen (z.B. DIN 18300 u. a.) durch Homogenbereiche ersetzt worden. Homogenbereiche sind z. B. in DIN 18300 definiert als:

"[...] ein begrenzter Bereich, bestehend aus einzelnen oder mehreren Boden- oder Felsschichten, der für Erdarbeiten vergleichbare Eigenschaften aufweist." Für das geplante Bauvorhaben wird davon ausgegangen, dass nur Homogenbereiche für das/die folgenden Gewerke anzugeben sind:

- ATV DIN 18320 "Landschaftsbauarbeiten"
- ATV DIN 18300 "Erdarbeiten"

13.2 Schichteinteilung

Bei der Festlegung der Homogenbereiche wird die in nachfolgender Tabelle zusammengestellte Schichteinteilung verwendet. Der Aufbruch von Verkehrsflächen ist in einer gesonderten Position auszuschreiben.

Tabelle 9: Schichteinteilung

Schicht-Nr.	Bodenschichtung	Einstufung	
		Boden	Fels
1	Oberboden	х	
2	Auffüllungen	Х	
3	Lösslehme	Х	
4	Verwitterungslehm	х	

Die Homogenbereiche werden wie folgt definiert:

Tabelle 10: Festlegung Homogenbereiche

Schicht-Nr.	Homogenbereich nach DIN 18320	Homogenbereich nach DIN 18300
1	HOB 1	
2		HEB 1
3		HFB 2
4		ПЕВ 2

Da es sich bei Schicht 2 um Auffüllungen handelt, sind diese gesondert zu behandeln (siehe hierzu Kapitel 8). Eine Unterteilung der Homogenbereiche infolge chemischer Inhaltstoffe erfolgt nicht, da die durchgeführten Untersuchungen lediglich orientierenden Charakter besitzen. Der vollständig zersetzte Tonstein wird aufgrund der Lockergesteinseigenschaften in den Homogenbereich "Boden" eingegliedert.

Die endgültigen Homogenbereiche sowie ggf. erforderliche Homogenbereiche für weitere Gewerke sind im weiteren Verlauf der Planungen in enger Abstimmung zwischen den Fachprojektanten und GMP festzulegen.

Die angegebenen Grenzwerte der nachfolgenden Tabellen ergeben sich aus den Ergebnissen der Laborversuche sowie der Auswertung von zahlreichen Versuchen in vergleichbaren geologischen Verhältnissen. Unter Berücksichtigung der Entstehungsgeschichte sowie durch äußere Einflüsse (z.B. Witterungsverhältnisse) können Abweichungen nach oben wie unten nicht ausgeschlossen werden.

13.3 Zahlenwerte Homogenbereiche DIN 18320

Oberboden wird hinsichtlich der Bearbeitbarkeit nach DIN 18915 in Oberbodengruppen eingeteilt. Die Ausschreibung erfolgt nach DIN 18320.

Tabelle 11: Homogenbereiche Boden entsprechend VOB DIN 18320

Homogenbereich	HOB 1			
Schicht-Nr.	1			
Eigenschaft / Kennwert	von	bis		
Ortsübliche Bezeichnung		Oberboden		
Bodengruppe (DIN 18196)		OU, OT, OH		
Bodengruppe (DIN 18915)		1, 4, 5		
Massenanteil Steine, D > 63 mm [Gew. %] (DIN EN ISO 14688-1)		nb		
Massenanteil Blöcke, D > 200 mm [Gew. %] (DIN EN ISO 14688-1)		nb		
Masseanteil große Blöcke, D > 630 mm [Gew. %] (DIN EN ISO 14688-1)		nb		

nb: nicht bestimmt, nicht bestimmbar

kursiv: Erfahrungswert, Schätzwert, oder indirekt bestimmt

13.4 Zahlenwerte Homogenbereiche DIN 18300

Infolge der Abhängigkeit der Homogenbereiche von den Bauverfahren können diese nur soweit eingeteilt werden, als sie zum Zeitpunkt der Baugrunduntersuchung und Gutachtenerstellung bekannt sind.

Bei der vorgenommenen Einteilung der Homogenbereiche werden folgendes Vorgehen und folgende Planungsgrundlagen vorausgesetzt:

- Einsatz eines Kettenbaggers von ca. 20 bis 30 t Betriebsgewicht (z.B. Liebherr R 920)
- Ausreichend Flächen zur Zwischenlagerung des Aushubs sind vorhanden.
- Kontinuierliche geotechnische Fachbetreuung zur Separation des Aushubs.
- Fräse, z.B. Stehr Fräse SBF 24-2
- Anbaufräse, z.B. MTS-Bodenrecycler B180-3

13.4.1 Boden

Tabelle 12: Homogenbereiche Boden entsprechend VOB DIN 18300

Homogenbereich		HEB 1		HEB 2	
Schicht-Nr.		2		3,4	
Eigenschaft / Kennwert		von	bis	von	bis
Ortsübliche Bezeichnung		Auffüllungen		Lösslehm, Verwitterungs- lehm	
Entsprechung Bodenklasse (VOB DIN 18300-2012)		3, 4		3, 4, 5	
Bodengruppe (DIN 18196)		alle grob-, gemischt- und feinkörnigen Böden nach DIN 18196		GU/GT, GU*GT* SU/ST, SU*/ST* TL, TM, TA	
Korngrößenverteilung (DIN EN ISO 17892-4)		Körnungsband 1 (siehe Anlage 11.1)		Körnungsband 2 (siehe Anlage 11.2)	
Massenanteil Steine, D > 63 mm (DIN EN ISO 14688-1)	[Gew. %]	0	10	0	25
Massenanteil Blöcke, D > 200 mm (DIN EN ISO 14688-1)	[Gew. %]	nb		0	10
Masseanteil große Blöcke, D > 630 mm (DIN EN ISO 14688-1)	[Gew. %]	nb		nb	
Dichte (DIN 18125-2)	[g/cm³]	1,8	2,1	1,8	2,1
undrainierte Scherfestigkeit (DIN 4094-4)	[kN/m²]	nb		nb	
Wassergehalt (DIN EN ISO 17892-1)	[-]	5	25	0,15	0,40
Plastizitätszahl (DIN EN ISO 17892-12)	Ξ	nb		0,05	0,30
Konsistenzzahl (DIN EN ISO 17892-12)	[-]	nb		<0,25	>1,25
Lagerungsdichte ¹⁾ (DIN EN ISO 14688-2)	[-]	locker sehr dicht		nb	
Organischer Anteil (DIN 18128)	[Gew. %]	0	5	0	5

¹⁾ indirekt bestimmt über Rammsondierungen

nb: nicht bestimmt, nicht bestimmbar

kursiv: Erfahrungswert, Schätzwert, oder indirekt bestimmt

Zusammenfassung weitergehende Empfehlungen

14.1 Kanal und Straße

Zum Zeitpunkt der Gutachtenerstellung liegen keine genauen Planunterlagen zu den Kanalleitungen sowie der Straße vor. Es wird davon ausgegangen, dass die Kanäle in einer Tiefe von 3,0 m - 4,0 m unter GOK und die Straße auf ca. derzeitiger GOK liegt. Demnach können die Leitungen und Straße nach den geotechnischen Empfehlungen errichtet werden. Es werden Stabilisierungsmaßnahmen erforderlich, die erst während der Bauausführung festgelegt werden können. Das Aushubmaterial ist nach einer Aufbereitung mit Bindemitteln für eine Rückverfüllung geeignet.

14.2 Empfehlungen zur weiteren Erkundung

Nach dem derzeitigen Planungsstand sind keine weiteren Erkundungen erforderlich.

14.3 Hinweise zur Planung, Ausschreibung und Durchführung von Entsorgungsmaßnahmen

Hinsichtlich der Planung, Ausschreibung und Durchführung der Aushubmaßnahme empfehlen wir folgende Vorgehensweise:

- Hinweis auf den orientierenden Charakter der durchgeführten abfalltechnischen Untersuchungen und die Beschränkung auf die untersuchten Materialien
- Berücksichtigen von Entsorgungspositionen für Ausbauasphalt der Verwertungsklasse A gemäß RuVA-StB 01 sowie für als gefährlichen Abfall eingestuften teerhaltigen Straßenaufbruch, für Materialien der Klassen BM-0, BM-0* und BM-F0* BM-F3 gemäß EBV, sowie für Materialien der Deponieklassen DK0 und DKI gemäß DepV bei der Ausschreibung.
- Berücksichtigung der Untersuchungsergebnisse der orientierenden abfalltechnischen Einstufung bei der Gewichtung der Aushubmassen je Entsorgungsposition
- Angabe der geplanten Entsorgungswege für sämtliche Zuordnungs- bzw. Deponieklassen durch die Bieter bereits bei der Angebotsabgabe

- Für alle im Entsorgungskonzept genannten Entsorgungsstellen sollten zur Überprüfung der Zulässigkeit des Entsorgungsweges folgende Unterlagen beigelegt sein:
 - Bezeichnung der Entsorgungsstelle mit Anschrift
 - Art der geplanten Entsorgung (z.B. Entsorgung auf einer Deponie, Verwertung als Deponieersatzbaustoff usw.)
 - Vollständiger Genehmigungsbescheid mit dem Positivkatalog der zugelassenen Abfallarten, Annahmekriterien der Entsorgungsstelle sowie gegebenenfalls Einzelfallentscheidungen der zuständigen Behörden
 - Annahmeerklärung des Entsorgers für die im Leistungsverzeichnis genannten Abfälle
- Prüfung der Zulässigkeit der Entsorgungswege bis spätestens zur Auftragserteilung
- Entsorgung/Verwertung der Aushubmaterialien durch einen zertifizierten Entsorgungsfachbetrieb gemäß § 52 Kreislaufwirtschaftsgesetz (KrWG).
- Berücksichtigen der notwendigen Arbeits- und Gesundheitsschutzmaßnahmen gem. TRGS 551 bei der Ausschreibung.
- Berücksichtigen der notwendigen Nachweisverfahren (eANV) bei der Entsorgung der gefährlichen Abfälle im Zuge der Ausschreibung.
- Entsorgung/Transport des gefährlichen Abfalls nur durch hierfür zugelassene Fachbetriebe.
- Abstimmung mit Betreiber der geplanten Entsorgungsstelle und gegebenenfalls mit der zuständigen Fachbehörde ob für die abfalltechnische Einstufung der Aushubmaterialien die vorliegenden in-situ-Untersuchungen ausreichend sind.
- Verbindliche abfalltechnische Deklaration der Aushubmaterialien über Haufwerksuntersuchung (empfohlenes Mietenvolumen maximal 500 m³), wenn von der geplanten Entsorgungsstelle die vorliegenden in-situ Ergebnisse nicht anerkannt werden, oder eine Untersuchung behördlich im Einzelfall gefordert wird.
- Lagerung der als gefährlichen Abfall eingestuften Materialien und des pechhaltigen Ausbauasphaltes auf externen zugelassenen Zwischenlagerflächen oder geeigneten Behältern (witterungsgeschützt) auf der Baustelle.

In Auffüllungsmaterialien ist mit bodenfremden Bestandteilen (Fremdbestandteilen) zu rechnen, auch wenn diese nicht erkundet wurden. Allein das Vorhandensein bestimmter Fremdbestandteile (z.B. Asphaltdeckenreste) kann zu einer schlechteren abfalltechnischen Einstufung oder einem anderen Entsorgungsweg führen. Dies ist im Zweifelsfall mit der konkreten Entsorgungsstelle im Vorfeld der Aushubmaßnahme abzuklären.

Die Untersuchungen erfolgten unter den im Bericht genannten Bedingungen auf Grundlage der zum Zeitpunkt der Untersuchung geltenden Kenntnisse, Vorschriften und Normen. Trotz sorgfältiger Vorgehensweise kann das Vorhandensein weiterer schadstoffhaltiger Materialien nicht ausgeschlossen werden. Eine Haftung aufgrund nicht identifizierter schadstoffhaltiger Materialien wird ausgeschlossen.

Ergeben sich im Zuge der Erdbauarbeiten Hinweise auf weitere Schadstoffbefunde wird empfohlen, GMP hinzuziehen.

14.4 Empfehlungen zur geotechnischen Überwachung

Sollte die Baumaßnahme nach länger anhaltenden Nässeperioden ausgeführt werden, können die bei der Baugrunduntersuchung im Erdplanum der Straße angetroffenen Lösslehme eine geringere Konsistenz besitzen. In diesem Fall müssten zur Erreichung einer ausreichenden Tragfähigkeit des Planums zusätzliche Stabilisierungsmaßnahmen durchgeführt werden, deren Art und Umfang vor Ort festzulegen sind.

Bei einem Befahren der bindigen Böden mit Rad- oder Kettenladern kann das Planum so in der Struktur gestört werden, dass es "aufweicht" und gering tragfähig wird. Auf dem Planum ist daher zunächst eine Schutzschicht von 30 cm - 40 cm zu erhalten. Diese Schutzschicht sollte dann unmittelbar vor dem Einbringen der Stabilisierung mit einem Bagger vor Kopf ausgehoben werden.

Ein Befahren des Planums sollte besonders in oder nach Nässeperioden vermieden werden, da sonst die Gefahr von tiefgründigen Aufweichungen besteht und umfangreiche zusätzliche Stabilisierungsmaßnahmen notwendig werden können. Bei ungünstigen Witterungsverhältnissen sollten daher die Arbeiten soweit möglich eingestellt werden.

Trotz der relativ geringen Abstände der Aufschlüsse können zwischen den einzelnen Untersuchungsstellen andere Untergrundverhältnisse vorhanden sein als im Gutachten beschrieben. Endgültige Angaben über erforderliche Stabilisierungsmaßnahmen können daher erst nach Herstellung des Planums und Ausführung von Plattendruckversuchen gemacht werden.

Der Gutachter ist zur Überprüfung der Tragfähigkeit des Planums und der Frostschutzschicht und zur genauen Angabe von notwendigen Stabilisierungsmaßnahmen mit heranzuziehen. Die Überprüfung muss durch Plattendruckversuche erfolgen, die an repräsentativ ausgewählten Stellen auszuführen sind. Zusätzlich ist das Planum mit beladenen Lkw abzufahren, um gegebenenfalls vorhandene Schwachstellen bzw. Bereiche unterschiedlicher Tragfähigkeit eingrenzen zu können.

Die abfalltechnischen Empfehlungen in Kapitel 14.3 bezüglich der zwingend erforderlichen abfalltechnischen Deklaration der Aushubmaterialien (Mietenbeprobung) sind zu beachten. Bei Nichtbeachtung der abfalltechnischen Empfehlungen kann es zu Bauverzögerungen und Kostenmehrungen kommen.

Bei der Planung der Baustellenlogistik ist zu berücksichtigen, dass für die chemische Analytik ein Zeitaufwand von sechs bis sieben Werktagen benötigt wird. Bis zum Vorliegen der Analysenergebnisse darf das Haufwerk nicht mehr durch weitere Anschüttungen oder Abgrabungen verändert werden.

14.5 Empfehlungen zur umwelttechnischen Überwachung

Wir empfehlen die Aushubmaßnahme durch eine verantwortliche Person fachtechnisch begleiten zu lassen, um eine ordnungsgemäße Verwertung der Aushubmaterialien zu gewährleisten.

Die abfalltechnischen Empfehlungen in Kapitel 14.3 sind zu beachten. Für Aushubmaterialien ist im Vorfeld mit der geplanten Entsorgungsstelle und gegebenenfalls der zuständigen Fachbehörde abzustimmen, ob die vorliegenden in-situ-Ergebnisse für eine abfalltechnische Einstufung ausreichend sind.

Bei Nichtbeachtung der abfalltechnischen Empfehlungen kann es zu Bauverzögerungen und Kostenmehrungen kommen.

Bei der Beprobung über Haufwerke ist bei der Planung der Baustellenlogistik zu berücksichtigen, dass für die chemische Analytik ein Zeitaufwand von sechs bis sieben Werktagen benötigt wird. Bis zum Vorliegen der Analysenergebnisse darf dann das Haufwerk nicht mehr durch weitere Anschüttungen oder Abgrabungen verändert werden.

Die Untersuchungen erfolgten unter den im Bericht genannten Bedingungen auf Grundlage der zum Zeitpunkt der Untersuchung geltenden Kenntnisse, Vorschriften und Normen. Trotz sorgfältiger Vorgehensweise kann das Vorhandensein weiterer schadstoffhaltiger Materialien nicht ausgeschlossen werden. Eine Haftung aufgrund nicht identifizierter schadstoffhaltiger Materialien wird ausgeschlossen.

Ergeben sich im Zuge der Erdbauarbeiten Hinweise auf weitere Schadstoffbefunde Dr.-ing.
Hans-Jorg Franke

BaylkaBaıı wird empfohlen, GMP hinzuziehen.

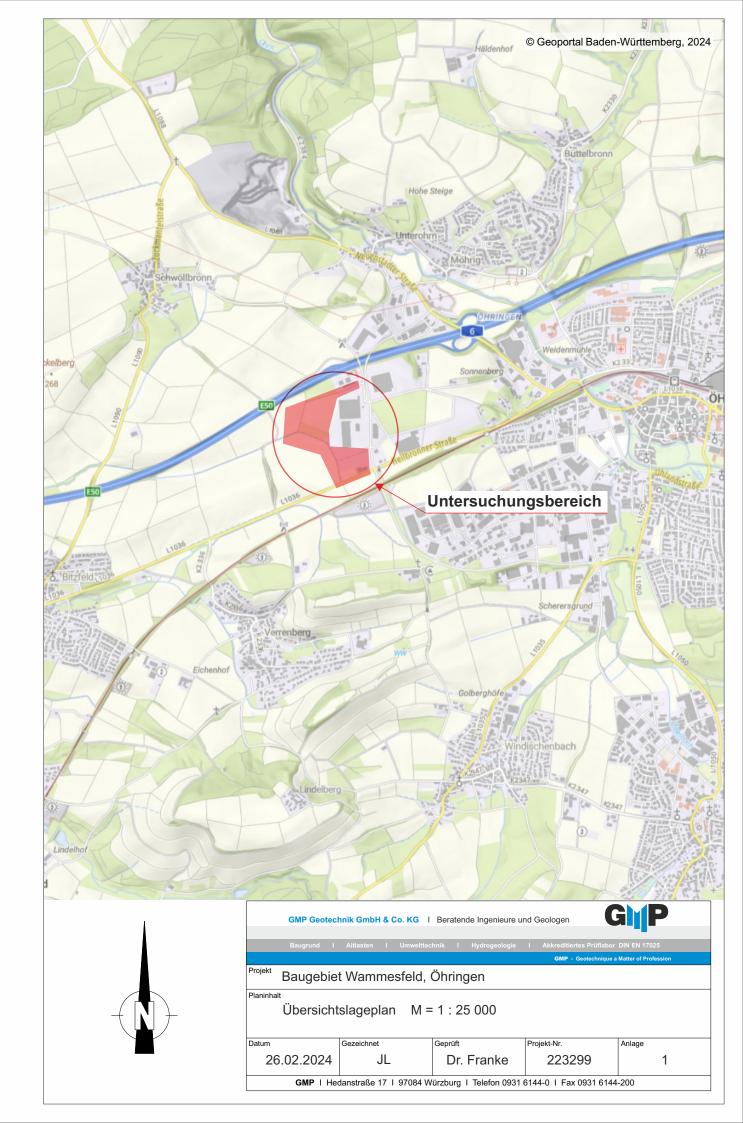
Dr.-Ing. H.-J. Franke

(Geschäftsführer)

M. Sc. B. H. La

Bich La

(Projektleiterin Geotechnik)


3. Welver

M. Sc. Geoökologie S. Weber

(Projektleiter Umwelttechnik)

Verteiler:

Stadt Öhringen, Herr Mestes (1x Schriftform, 1x digital)

GMP Geotechnik GmbH & Co. KG - Beratende Ingenieure und Geologen - Hedanstraße 17 - 97084 Würzburg - Tel.: +49(931) 6144-0 - Fax +49(931) 6144-200

Legende nach DIN 4023: 2006-02

Aufschlüsse

oBS Sondierbohrung ◆KB Aufschlußbohrung ◆RKS Rammkernsondierung

☐ Sch Schurf

- DPL/DPM/DPH Sondierung mit der Rammsonde
- ★FVT 50/75 Flügelscherversuch DIN 4094-4

Rammdiagramm EN ISO 22476-2:2005

Anzahl der Schläge pro 10 cm Sondeneindringung $\rm\,N_{10}$ 100 110 1.0 Fallhöhe 0.5 m Fallhöhe 0.75 m Fallhöhe 0.5 m Fallhöhe 0.5 m Fallhöhe 0.5 m Tiefe in m Fallgewicht 10 kg Fallgewicht 30 kg Fallgewicht 50 kg Fallgewicht 63,5 kg Fallgewicht 63,5 kg 2.0 Sondenspitze 10 cm² Sondenspitze 15 cm² Sondenspitze 15 cm² Sondenspitze 16 cm Sondenspitze 20 cm 3.0 **DPL DPM DPH** DPSH-A DPSH-B

Grundwasser

√ 4.3 (07.06.93)

Grundwasser

V 4.3 (07.06.93)

Ruhewasser

√ 4.3 (07.06.93)

Sickerwasser

Bohrlochrammsondierung **BDP DIN 4094**

Flügelscherversuch FVT DIN EN 1997

FVT 50/75

C_{fv} max. Scherwiderstand / ■ 87 / 42 C_{Rv} Rest-Scherwiderstand $[KN/m^2]$

Proben und Sonderzeichen

597	Sonderprobe	\	}	breiig/weich
598 [Kernprobe			steif/halbfest/fest
598 [gestörte Bodenprobe	Ź Ź)))	geklüftet/nass

stark verwitter (angelehnt an DIN 4023)
DIN 4023)

vollständig verwittert

Symbolschlüssel Stratigraphie

q = Quartär t = Tertiär

kr = Kreide i = Jura kro = Oberkreide jo = Oberer Jura (Malm) kru = Unterkreide jm = Mittlerer Jura (Dogger) ju = Unterer Jura (Lias)

k = Keuper ko = Oberer Keuper km = Mittlerer Keuper ku = Unterer Keuper

m = Muschelkalk mo = Oberer Muschelkalk mm = Mittlerer Muschelkalk mu = Unterer Muschelkalk

s = Buntsandstein so = Oberer Buntsandstein sm = Mittlerer Buntsandstein su = Unterer Buntsandstein

p = Perm z = Zechstein r = Rotliegendes c = Karbon d = Devon si = Silur

o = Ordovizium cb = Kambrium pr = Präkambrium

Allgemeine Abkürzungen

DS = Deckschicht BS = Binderschicht TS = Tragschicht

KV = Kernverlust SE = Schichteinfall G.o.B.= Geruch ohne Befund WG = Weißglas

E = Eimer

Blatt-Nr.:

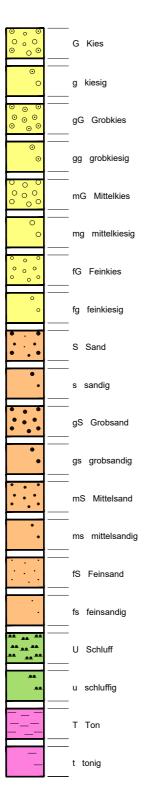
V/S = Glasviole / Schottglas

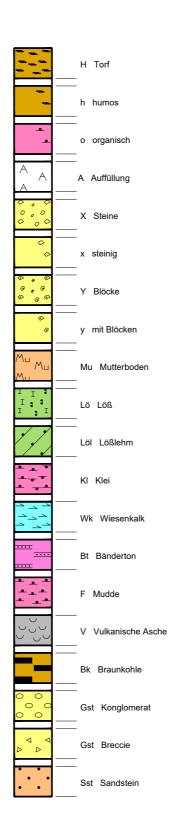
Allgemeines Legendenblatt

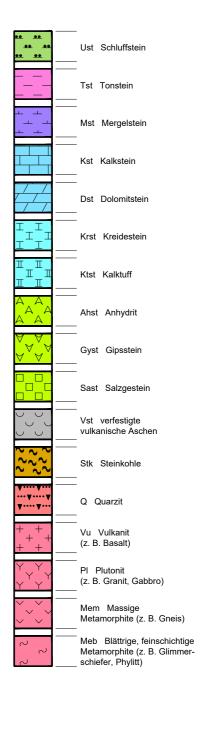
Anlage

1/2

2

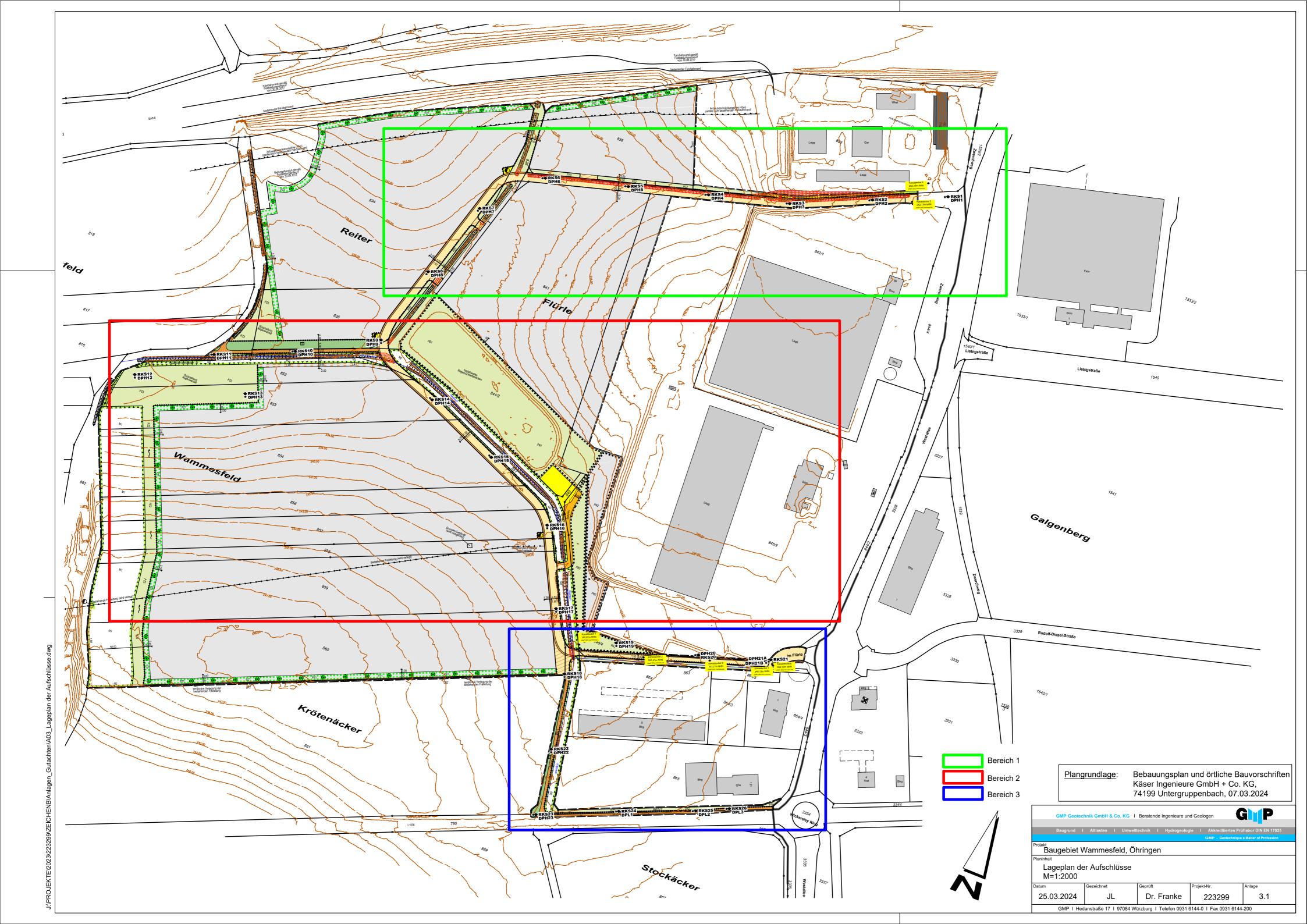


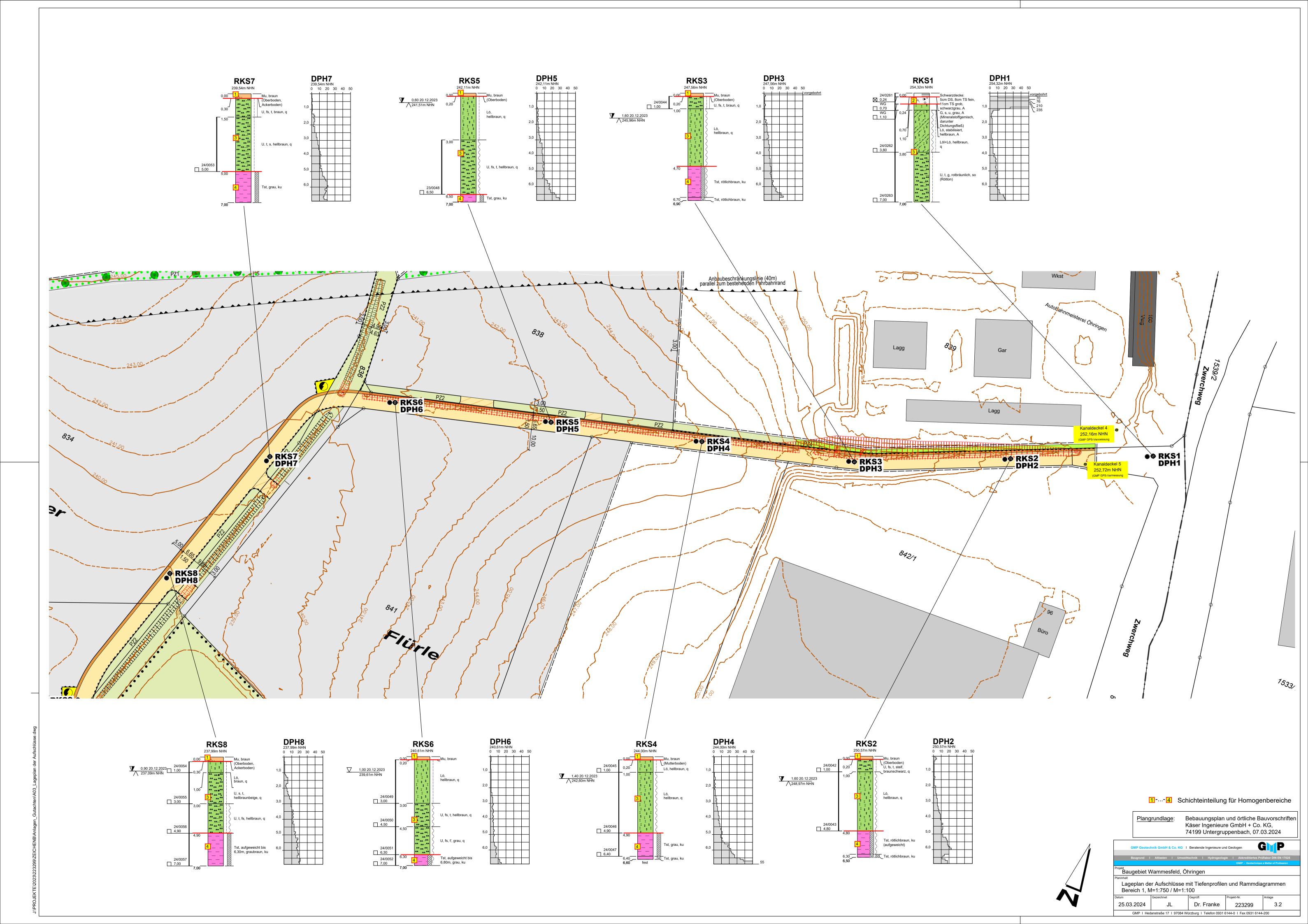

I Altlasten I Umwelttechnik I Hydrogeologie I Akkreditiertes Prüflabor DIN EN 17025

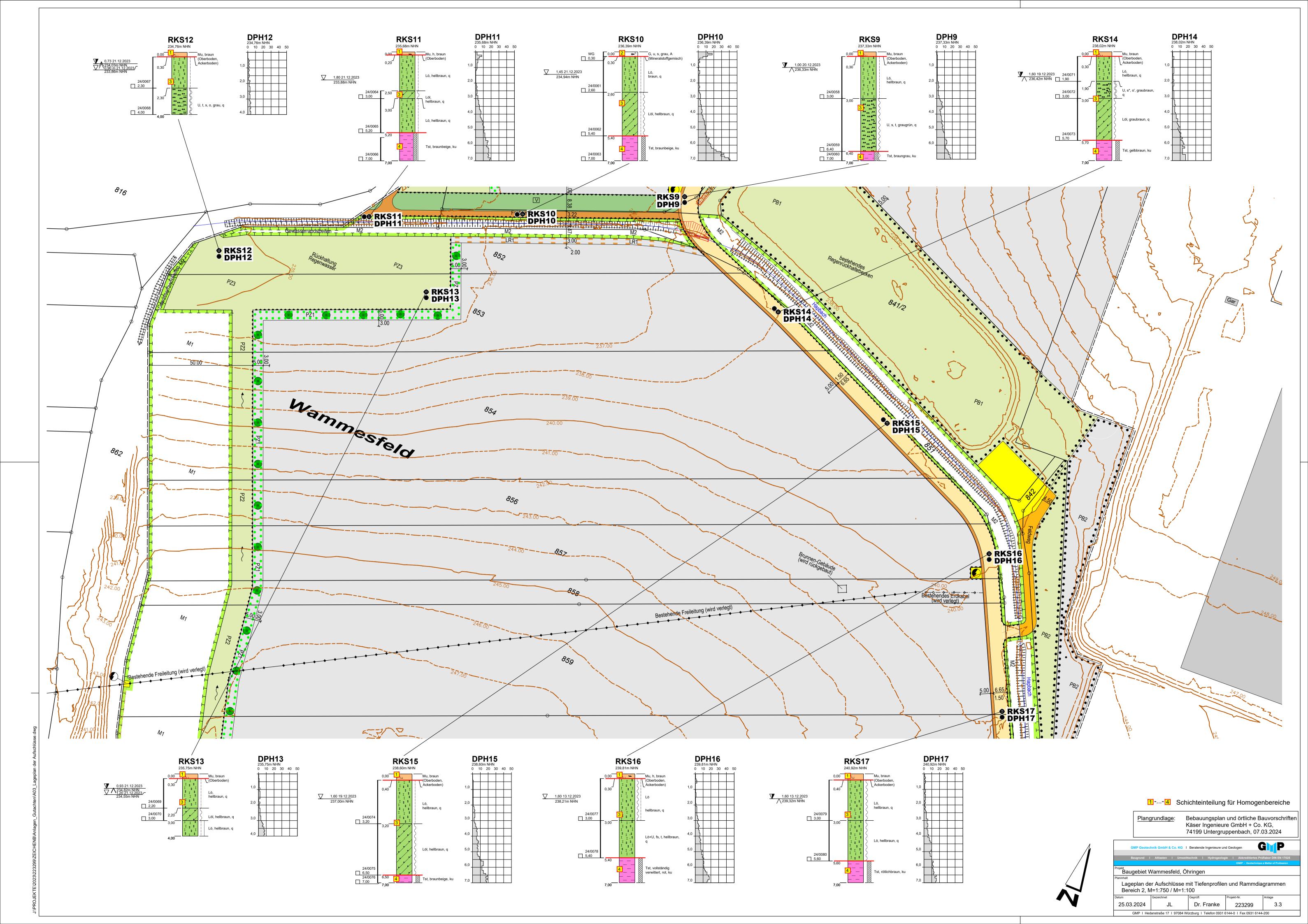

GMP Geotechnik GmbH & Co. KG - Beratende Ingenieure und Geologen - Hedanstraße 17 - 97084 Würzburg - Tel.: +49(931) 6144-0 - Fax +49(931) 6144-200

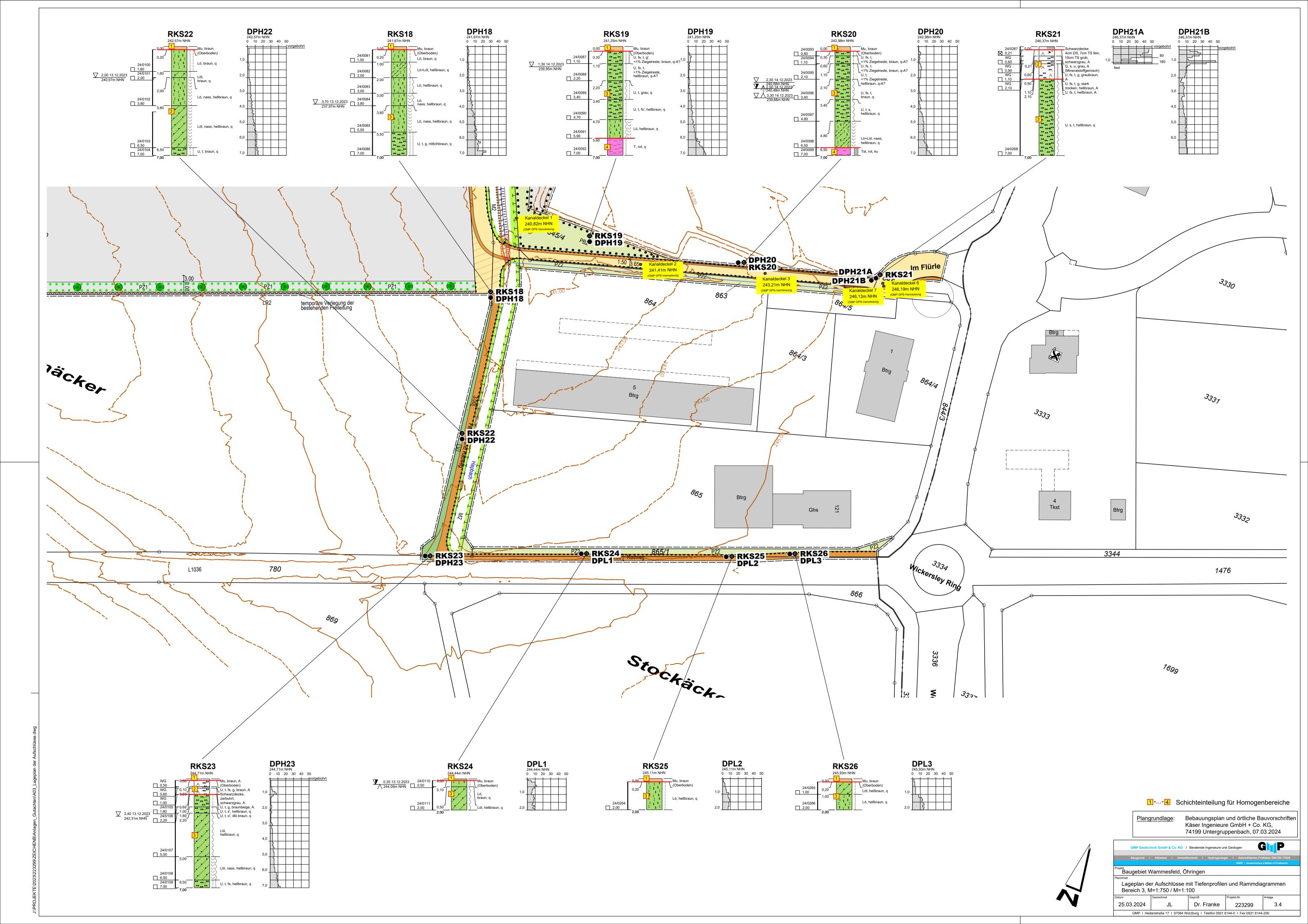
Legende nach DIN 4023: 2006-02

Signaturen für Boden- und Felsarten








Allgemeines Legendenblatt

2/2

Altlasten

Umwelttechnik

Hydrogeologie

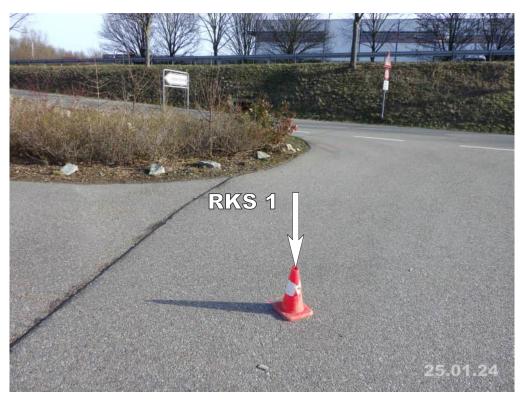


Bild 1: Ansatzpunkt RKS1

Bild 2: Ansatzpunkt RKS2

Projekt:	Projekt Nr:
Baugebiet Wammesfeld, Öhringen	223299
Position:	Anlage:
Bilddokumentation Ansatzpunkte der Aufschlüsse	4.1

Altlasten

Umwelttechnik

Hydrogeologie

Bild 3: Ansatzpunkt RKS3

Bild 4: Ansatzpunkt RKS4

Projekt:	Projekt Nr:
Baugebiet Wammesfeld, Öhringen	223299
Position:	Anlage:
Rilddokumentation Ansatzpunkte der Aufschlüsse	4.2

Altlasten

Umwelttechnik

Hydrogeologie

Akkreditiertes Prüflabor DIN EN 17025

Bild 5: Ansatzpunkt RKS5

Bild 6: Ansatzpunkt RKS6

Projekt:	Projekt Nr:
Baugebiet Wammesfeld, Öhringen	223299
Position:	Anlage:
Bilddokumentation Ansatzpunkte der Aufschlüsse	4.3

Baugrund Altlasten Umwelttechnik Hydrogeologie | Akkreditiertes Prüflabor DIN EN 17025

Bild 7: Ansatzpunkt RKS7

Bild 8: Ansatzpunkt RKS8

Projekt:	Projekt Nr:
Baugebiet Wammesfeld, Öhringen	223299
, ,	
Position:	Anlage:
Bilddokumentation Ansatzpunkte der Aufschlüsse	4.4

Bilddokumentation Ansatzpunkte der Aufschlüsse

Altlasten

Umwelttechnik

Hydrogeologie

Bild 9: Ansatzpunkt RKS9

Bild 10: Ansatzpunkt RKS10

Projekt:	Projekt Nr:
Baugebiet Wammesfeld, Öhringen	223299
Position:	Anlage:
Rilddokumentation Ansatzpunkte der Aufschlüsse	4.5

Altlasten

Umwelttechnik

Hydrogeologie

Bild 11: Ansatzpunkt RKS11



Bild 12: Ansatzpunkt RKS12

Projekt:	Projekt Nr:
Baugebiet Wammesfeld, Öhringen	223299
Position:	Anlage:
Bilddokumentation Ansatzpunkte der Aufschlüsse	4.6

Baugrund | Altlasten |

Umwelttechnik

| Hydrogeologie

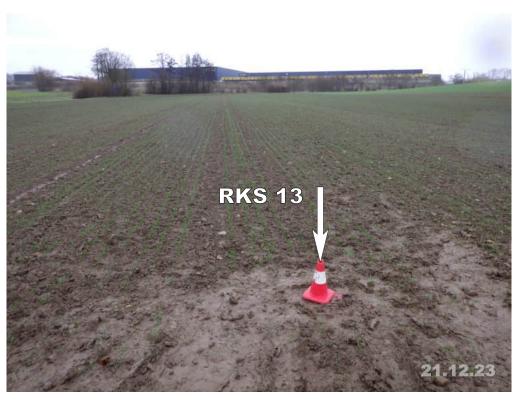


Bild 13: Ansatzpunkt RKS13

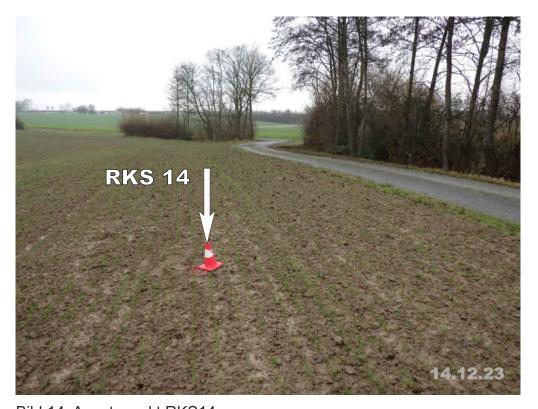


Bild 14: Ansatzpunkt RKS14

Projekt:	Projekt Nr:
Baugebiet Wammesfeld, Öhringen	223299
Position:	Anlage:
Rilddokumentation Ansatzpunkte der Aufschlüsse	4 7

Altlasten

Umwelttechnik

Hydrogeologie

Bild 15: Ansatzpunkt RKS15

Bild 16: Ansatzpunkt RKS16

Projekt:	Projekt Nr:
Baugebiet Wammesfeld, Öhringen	223299
Position:	Anlage:
Rilddokumentation Ansatznunkte der Aufschlüsse	4.8

Altlasten

Umwelttechnik

Hydrogeologie

Bild 17: Ansatzpunkt RKS17

Bild 18: Ansatzpunkt RKS18

Projekt:	Projekt Nr:
Baugebiet Wammesfeld, Öhringen	223299
Position:	Anlage:
Bilddokumentation Ansatzpunkte der Aufschlüsse	4.9

Altlasten

Umwelttechnik

Hydrogeologie

Bild 19: Ansatzpunkt RKS19

Bild 20: Ansatzpunkt RKS20

Projekt:	Projekt Nr:
Baugebiet Wammesfeld, Öhringen	223299
Position:	Anlage:
Rilddokumentation Ansatzpunkte der Aufschlüsse	4 10

Altlasten

Umwelttechnik

Hydrogeologie

Bild 21: Ansatzpunkt RKS21

Bild 22: Ansatzpunkt RKS22

Baugebiet Wammesfeld, Öhringen	Projekt Nr: 223299
Position:	Anlage:
Bilddokumentation Ansatzpunkte der Aufschlüsse	4.11

Altlasten

Umwelttechnik

Hydrogeologie

Bild 23: Ansatzpunkt RKS23

Bild 24: Ansatzpunkt RKS24

Baugebiet Wammesfeld, Öhringen	Projekt Nr: 223299
Position:	Anlage:
Bilddokumentation Ansatzpunkte der Aufschlüsse	4.12

Altlasten

Umwelttechnik

Hydrogeologie

Bild 25: Ansatzpunkt RKS25

Bild 26: Ansatzpunkt RKS26

Baugebiet Wammesfeld, Öhringen	223299
Position:	Anlage:
Bilddokumentation Ansatzpunkte der Aufschlüsse	4.13

Altlasten

Umwelttechnik

| Hydrogeologie

Bild 1: Bohrkern RKS1

Bild 2: Bohrkern RKS21

Projekt:	Projekt Nr:
Baugebiet Wammesfeld, Öhringen	223299
Position:	Anlage:
Bilddokumentation Schwarzdeckenkerne	5

Altlasten

Umwelttechnik

Hydrogeologie

Akkreditiertes Prüflabor DIN EN 17025

Projekt: Erschließung Baugebiet Wammersfeld, Öhringen

Tabelle 1: Bodenproben

Auf- schluss	Labor- Nr.	gP	uP	Entnahmetiefe [m u. GOK]	Bodenart	Bemerkung
DI/O 4	24/0262	Х		1,10 - 3,80	Löl-Lö [q]	RP
RKS 1	24/0263	Х		3,80 - 7,00	U, t, g [so]	W _n , W _{fa}
DI/C 0	24/0042	Х		0,20 - 1,00	U, s, t [q]	RP
RKS 2	24/0043	Х		1,00 - 4,80	Lö [q]	Wn, Wfa
RKS 3	24/0044	Х		0,20 - 1,00	U, s, t [q]	RP
	24/0045	Х		0,20 - 1,00	Lö [q]	RP
RKS 4	24/0046	х		1,00 - 4,90	Lö [q]	Wn, kk, Wfa, Ws
	24/0047	Х		4,90 - 6,40	Tst [ku]	RP
RKS 5	23/0048	Х		3,00 - 6,50	U, s, t [q]	RP
	24/0049	х		0,20 - 3,00	Lö [q]	Wn, Wfa
RKS 6	24/0050	Х		3,00 - 4,50	U, s, t [q]	RP
	24/0051	Х		4,50 - 6,30	U, s, t' [q]	RP
RKS 7	24/0053	х		1,50 - 5,00	U, t, s [q]	w _n , kk
	24/0054	Х		0,30 - 1,00	Lö [q]	RP
DI/O O	24/0055	Х		1,00 - 3,00	U, s, t [q]	Wn, Wfa, Ws
RKS 8	24/0056	Х		3,00 - 4,90	U, t, s [q]	RP
	24/0057	Х		4,90 - 7,00	Tst [ku]	RP
	24/0058	Х		0,30 - 3,00	Lö [q]	RP
RKS 9	24/0059	Х		3,00 - 6,40	U, s, t [q]	W _n , W _{fa}
	24/0060	Х		6,40 - 7,00	Tst [ku]	RP
	24/0061	Х		0,30 - 2,60	Lö [q]	w _n , kk
RKS 10	24/0062	Х		2,60 - 5,40	Löl [q]	RP
	24/0063	Х		5,40 - 7,00	Tst [ku]	RP
	24/0064	х		2,50 - 3,00	Löl [q]	Wn, Wfa, Ws
RKS 11	24/0065	х		3,00 - 5,20	Lö [q]	w _n , kk
	24/0066	Х		5,50 - 7,00	Tst [ku]	RP
DI/O 40	24/0067	Х		0,30 - 2,30	Lö [q]	RP
RKS 12	24/0068	Х		2,30 - 4,00	U, t, s, o [q]	Wn, Wfa
DI/O 40	24/0069	Х		0,30 - 2,20	Lö [q]	RP
RKS 13	24/0070	Х		2,20 - 3,00	Löl [q]	RP
	24/0071	Х		0,30 - 1,90	Lö [q]	RP
RKS 14	24/0072	Х		1,90 - 3,00	U, s*, o' [q]	Wn, Wfa
	24/0073	Х		3,00 - 5,70	Löl [q]	RP
	24/0074	х		0,40 - 3,20	Lö [q]	w _n , kk
RKS 15	24/0075	Х		3,20 - 6,50	Löl [q]	RP
	24/0076	Х		6,50 - 7,00	Tst [ku]	RP
DI/C / -	24/0077	х		0,30 - 3,00	Lö [q]	Wn, Wfa
RKS 16	24/0078	Х		3,00 - 5,40	Lö [q]	RP
	24/0079	Х		0,40 - 3,00	Lö [q]	Wn, Wfa
RKS 17	24/0080	Х		3,00 - 5,60	Lö [q]	RP

Altlasten

Umwelttechnik

Hydrogeologie

Akkreditiertes Prüflabor DIN EN 17025

Projekt: Erschließung Baugebiet Wammersfeld, Öhringen

Auf- schluss	Labor- Nr.	gP	uP	Entnahmetiefe [m u. GOK]	Bodenart	Bemerkung
	24/0081	Х		0,20 - 1,00	Lö [q]	RP
	24/0082	Х		1,00 - 2,00	Lö-Löl [q]	w _n , kk, w _{fa} , w _s
DVC 10	24/0083	Х		2,00 - 3,00	Lö [q]	RP
_	24/0084	Х		3,00 - 3,80	Lö [q]	Wn, Wfa
	24/0085	Х		3,80 - 5,50	Lö [q]	RP
	24/0086	Х		5,50 - 7,00	U, t, g [q]	RP
	24/0087	Х		0,30 - 1,10	U, s, t, g' [q-A]	RP
	24/0088	Х		1,10 - 2,20	U, s, t [q-A]	RP
RKS 19	24/0089	Х		2,20 - 3,40	U, t [q]	w _n , kk
	24/0090	Х		3,40 - 4,70	U, t, s' [q]	RP
	24/0091	Х		4,70 - 5,90	Lö [q]	RP
	24/0092	Х		5,90 - 7,00	T [q]	RP
	24/0093	Х		0,30 - 0,60	U, s, t [q-A]	RP
	24/0094	Х		0,60 - 1,10	U, s, t [q-A]	RP
24/0095	24/0095	Х		1,10 - 2,10	U, t [q-A]	w _n , kk
RKS 20	24/0096	Х		2,10 - 3,40	U, s, t [q]	RP
	24/0097	Х		3,40 - 4,80	U, t, s [q]	Wn, Wfa
	24/0098	Х		4,80 - 6,50	Lö-Löl [q]	RP
	24/0099	Х		6,50 - 7,00	Tst [ku]	RP
RKS 21	24/0268	Х		2,10 - 7,00	U, s, t [q]	W _n , W _{fa}
	24/0100	Х		0,20 - 1,60	Lö [q]	RP
	24/0101	Х		1,60 - 2,00	Löl [q]	RP
RKS 22	24/0102	Х		2,00 - 3,80	Lö [q]	w _n , kk
	24/0103	Х		4,20 - 6,50	Löl [q]	RP
	24/0104	Х		6,50 - 7,00	U, t [q]	RP
	24/0105	Х		1,00 - 1,80	U, t, s' [q]	Wn, Wfa, Ws
	24/0106	Х		1,80 - 2,20	U, t, o' [q]	RP
RKS 23	24/0107	Х		2,20 - 5,00	Löl [q]	w _n , kk
	24/0108	Х		5,00 - 6,50	Löl [q]	RP
	24/0109	Х		6,50 - 7,00	U, t, s [q]	RP
DIVE 04	24/0110	Х		0,10 - 0,50	Lö [q]	RP
RKS 24	24/0111	х		0,50 - 2,00	Löl [q]	Wn, Wfa
RKS 25	24/0264	Х		0,20 - 2,00	Lö [q]	RP
DV6 06	24/0265	Х		0,20 - 1,00	Löl [q]	RP
RKS 26	24/0266	Х		1,00 - 2,00	Lö [q]	RP

wn: natürlicher Wassergehalt wfa: Wassergehalt an der Fließ- und Ausrollgrenze

kk: Kornverteilungsanalysen ws: Schrumpfgrenze

gP: gestörte Bodenprobe (Güteklasse 3/4) uP: ungestörte Bodenprobe (Güteklasse 1/2)

RP: Rückstellprobe

Projekt: Erschließung Baugebiet Wammersfeld, Öhringen

Tabelle 2: Entnommene Asphaltdeckenkerne für orientierende abfalltechnische Untersuchungen

Aufschluss	Entnahmetiefe [m u. GOK]	Sensorik	Verwendung, Analytik		
RKS 1	0.0 - 0.24	Ohne Befund	PAK + Phenole		
RKS 21	0,0 - 0,21	Ohne Befund	PAK + Phenole		

RP: Rückstellproben

PAK: Polycyclische aromatische Kohlenwasserstoffe im Feststoff

Tabelle 3: Für orientierende abfalltechnische Untersuchungen entnommene Boden-/Materialproben

Aufschluss	Entnahmetiefe [In m u. GOK]	Material	Verwendung, Analytik
RKS 1	0,24 – 0,7	Auffüllung: Kies, sandig, schluffig (Mineralstoffgemisch, neu)	RP
KK3 I	0,7 – 1,1	Auffüllung: Löss, stabilisiert	RP
RKS 2	0,2 – 1,0	Nat. Untergrund: Schluff, feinsandig, tonig	MP 1, EBV BM-0*
RKS 3	0,2 – 1,0	Nat. Untergrund: Schluff, feinsandig, tonig	MP 1, EBV BM-0*
RKS 4	0,2 – 1,0	Nat. Untergrund: Löss	MP 1, EBV BM-0*
RKS 6	0,2 – 3,0	Nat. Untergrund: Löss	MP 1, EBV BM-0*
RKS 12	0,3 – 2,3	Nat. Untergrund: Löss	MP 2, EBV BM-0*
RKS 13	0,3 – 2,2	Nat. Untergrund: Löss	MP 2, EBV BM-0*
RKS 18	0,2 – 1,0	Nat. Untergrund: Löss	MP 4, EBV BM-0*
	0,21 – 0,6	Auffüllung: Kies, sandig, schluffig (Mineralstoffgemisch)	RP
DKC 24	0,6 - 0,9	Auffüllung: Schluff, feinsandig, tonig, kiesig	MP 3, EBV BM-0*
RKS 21	0,9 – 1,1	Auffüllung: Schluff, feinsandig, tonig, kiesig	MP 3, EBV BM-0*
	1,1 – 2,1	Auffüllung: Schluff, feinsandig, tonig	RP
RKS 22	0,2 – 1,6	Nat. Untergrund: Löss	MP 4, EBV BM-0*
	0,15 – 0,5	Auffüllung: Schluff, tonig, feinsandig	MP 5, EBV BM-0*
RKS 23	0,5 – 0,6	Zerbohrte, alte Schwarzdecke	PAK + Phenole
	0,6 – 1,0	Auffüllung: Schluff, tonig, kiesig	MP 5, EBV BM-0*
RKS 24	0,1 – 0,5	Nat. Untergrund: Löss	MP 6, EBV BM-0*
RKS 25	0,2 – 2,0	Nat. Untergrund: Löss	MP 6, EBV BM-0*
RKS 26	0,2 – 1,0	Nat. Untergrund: Löss	MP 6, EBV BM-0*

MP..: Einzelprobe wurde zur Herstellung einer Mischprobe verwendet; RP: Rückstellproben

EBV: "Verordnung über Anforderungen an den Einbau von mineralischen Ersatzbaustoffen in technische Bauwerke (Ersatzbaustoffverordnung)"

PAK: Polycyclische aromatische Kohlenwasserstoffe im Feststoff

Phenole: Phenolindex im Eluat

GMP Geotechnik GmbH & Co. KG - Beratende Ingenieure und Geologen - Hedanstraße 17- 97084 Würzburg - Tel.: +49(931) 6144-0 - Fax +49(931) 6144-200

Zusammenstellung der Laborversuche

Zı	usar	nmer	nstellung	j der Lab	orversuc	he	
Labornummer			24/0043	24/0046	24/0049	24/0053	24/055
Entnahmestelle			RKS 2	RKS 4	RKS 6	RKS 7	RKS 8
Entnahmetiefe		m	1,00-4,80	1,00-4,90	0,20-3,00	1,50-5,00	1,00-3,00
Hauptbodenart			Schluff	Schluff	Schluff	Schluff	Schluff
Beimengung			Ton, Sand	Ton	Ton, Sand	Ton	Ton, Sand
			(q)	(q)	(q)	(q)	(q)
Farbe			hellbraun	hellbraun	hellbraun	hellbraun	hellbraunbeige
ungestört/gestört			gest.	gest.	gest.	gest.	gest.
Wichte des feuchten Bodens	γ	kN/m³	<u> </u>	J	J	<u> </u>	Ü
Wassergehalt	w _n	1	0,254	0,262	0,260	0,228	0,221
Porenanteil	n	1	•			· · · · · · · · · · · · · · · · · · ·	
Porenzahl	е	1					
Kornwichte	γs	kN/m³					
Kornkennziffer				2800		3700	
Ungleichförmigkeitszahl	U	1					
Wirksamer Korndurchmesser	d _w	mm					
Fließgrenze	W _L	1	0,314	0,290	0,337		0,321
Ausrollgrenze	W _P	1	0,183	0,193	0,218		0,194
Plastizitätszahl	I _P	1	0,131	0,097	0,119		0,127
Konsistenzzahl	I _c	1	0,46	0,29	0,65		0,79
Schrumpfgrenze	W _s	1	0,10	0,155	0,00		0,151
Schrumpfmaß	S	%		11			10
Undrainierte Scherfestigkeit 1)	C _u	kN/m²					10
lockerste Lagerung	max n	1					
dichteste Lagerung	min n	1					
Lagerungsdichte	D	1					
einfache Proctordichte		t/m³					
optimaler Wassergehalt	ρ _{pr}	1					
erreichbare Verdichtung bei w _n	W _{pr}	%					
Steifemodul $\sigma = 0.05 - 0.1 \text{ MN/m}^2$		MN/m²					
Steifemodul $\sigma = 0.1 - 0.2 \text{ MN/m}^2$	E _s	MN/m²					
Steifemodul $\sigma = 0.2 - 0.3 \text{ MN/m}^2$	E _s	MN/m²					
Reibungswinkel		0					
Kohäsion	φ	kN/m²					
Laborflügelscherfestigkeit 4)		kN/m²					
Einaxiale Druckfestigkeit	τ _{fl}	MN/m²					
Abrasivität Cerchar	q _u CAI						
Abrasivität LCPC	LAK						
Glühverlust		g/t					
Veränderungsgrad 3)	V _{gl}	M%					
Durchlässigkeitsbeiwert	 le	 m/s					
Klassifizierung nach DIN 18196	k _f	m/s	T '	OT*	T:		
Undrainierte Scherfestigkeit aus Ic [Kiekbus]	oh Poutoo	 hnik 761	TL 2) Wassergehalt der bing	ST*	TL 3) Nach DIN EN ISO 146	880 Tab. 5 boi 24 b Wa	TL

¹⁾ Undrainierte Scherfestigkeit aus Ic [Kiekbusch, Bautechnik 76]

Gemittelt aus 3 Versuchen an Ober- und Unterseite der Probe
Proiekt:

Baugebiet Wammesfeld, Öhringen

Projekt-Nr.: Anlage:

²⁾ Wassergehalt der bindigen Bestandteile

³⁾ Nach DIN EN ISO 14689 Tab. 5 bei 24 h Wasserbedeckung

⁵⁾ Undrainierter Versuch

GMP Geotechnik GmbH & Co. KG - Beratende Ingenieure und Geologen - Hedanstraße 17- 97084 Würzburg - Tel.: +49(931) 6144-0 - Fax +49(931) 6144-200

Zusammenstellung der Laborversuche

Zι	ısar	nme	nstellung	g der Lak	orversu	che	
Labornummer			24/0059	24/0061	24/0064	24/0065	24/0068
Entnahmestelle			RKS 9	RKS 10	RKS 11	RKS 11	RKS 12
Entnahmetiefe		m	3,00-6,40	0,30-2,60	2,50-3,00	3,00-5,20	2,30-4,00
Hauptbodenart			Schluff	Schluff	Schluff	Schluff	Schluff
Beimengung			Ton, Sand	Ton, Sand	Ton, Sand	Ton	Ton, Sand, org.
			(q)	(q)	(q)	(q)	(q)
Farbe			graugrün	braun	hellbraun	hellbraun	grau
ungestört/gestört			gest.	gest.	gest.	gest.	gest.
Wichte des feuchten Bodens	γ	kN/m³					
Wassergehalt	w _n	1	0,248	0,259	0,276	0,233	0,293
Porenanteil	n	1					
Porenzahl	е	1					
Kornwichte	γs	kN/m³					
Kornkennziffer				2710		2800	
Ungleichförmigkeitszahl	U	1					
Wirksamer Korndurchmesser	d _w	mm					
Fließgrenze	W _L	1	0,323		0,340		0,305
Ausrollgrenze	W _P	1	0,185		0,210		0,215
Plastizitätszahl	I _P	1	0,138		0,130		0,090
Konsistenzzahl	I _c	1	0,54		0,49		0,13
Schrumpfgrenze	W _s	1	- , -		0,150		
Schrumpfmaß	S	%			14		
Undrainierte Scherfestigkeit 1)	Cu	kN/m²					
lockerste Lagerung	max n	1					
dichteste Lagerung	min n	1					
Lagerungsdichte	D	1					
einfache Proctordichte	ρ_{pr}	t/m³					
optimaler Wassergehalt	W _{pr}	1					
erreichbare Verdichtung bei w _n	D _{Pr}	%					
Steifemodul $\sigma = 0.05 - 0.1 \text{ MN/m}^2$		MN/m²					
Steifemodul $\sigma = 0.1 - 0.2 \text{ MN/m}^2$	E _s	MN/m²					
Steifemodul $\sigma = 0.2 - 0.3 \text{ MN/m}^2$	E _s	MN/m²					
Reibungswinkel	φ	0					
Kohäsion	C	kN/m²					
Laborflügelscherfestigkeit 4)	τ _{fl}	kN/m²					
Einaxiale Druckfestigkeit	q _u	MN/m²					
Abrasivität Cerchar	CAI						
Abrasivität LCPC	LAK	g/t					
Glühverlust	V _{ql}	M%					
Veränderungsgrad 3)							
Durchlässigkeitsbeiwert	k _f	m/s					
Klassifizierung nach DIN 18196		111/3	TL		TL		
Undrainierte Scherfestigkeit aus Ic [Kiekbus	ch Bauten	hnik 761	²⁾ Wassergehalt der bin	digen Bestandteile	3) Nach DIN EN ISO 14	689 Tah 5 hei 24 h W.	l asserhedeckung

¹⁾ Undrainierte Scherfestigkeit aus Ic [Kiekbusch, Bautechnik 76]

⁴⁾ Gemittelt aus 3 Versuchen an Ober- und Unterseite der Probe ⁵⁾ Undrain

5) Undrainierter Versuch

Proiekt: Proiekt-Nr.: Anlage:
Baugebiet Wammesfeld, Öhringen 223299 7.2

²⁾ Wassergehalt der bindigen Bestandteile

³⁾ Nach DIN EN ISO 14689 Tab. 5 bei 24 h Wasserbedeckung

GMP Geotechnik GmbH & Co. KG - Beratende Ingenieure und Geologen - Hedanstraße 17- 97084 Würzburg - Tel.: +49(931) 6144-0 - Fax +49(931) 6144-200

Zusammenstellung der Laborversuche

Zι	ısar	nme	nstellung	i der Lar	orversu	cne	
Labornummer			24/0072	24/0074	24/0077	24/0079	24/0082
Entnahmestelle			RKS 14	RKS 15	RKS 16	RKS 17	RKS 18
Entnahmetiefe		m	1,90-3,00	0,40-3,20	0,30-3,00	0,40-3,00	1,00-2,00
Hauptbodenart			Schluff	Schluff	Schluff	Schluff	Schluff
Beimengung			Ton, Sand, org.	Ton	Ton, Sand	Ton, Sand	Ton
			(q)	(q)	(q)	(q)	(q)
Farbe			graubraun	hellbraun	hellbraun	hellbraun	hellbraun
ungestört/gestört			gest.	gest.	gest.	gest.	gest.
Wichte des feuchten Bodens	γ	kN/m³					
Wassergehalt	W _n	1	0,338	0,250	0,245	0,254	0,243
Porenanteil	n	1					
Porenzahl	е	1					
Kornwichte	γs	kN/m³					
Kornkennziffer				2800			2800
Ungleichförmigkeitszahl	U	1					
Wirksamer Korndurchmesser	d _w	mm					
Fließgrenze	W _L	1	0,350		0,357	0,346	0,308
Ausrollgrenze	W _P	1	0,246		0,203	0,203	0,197
Plastizitätszahl	I _P	1	0,104		0,154	0,143	0,111
Konsistenzzahl	I _c	1	0,12		0,73	0,64	0,59
Schrumpfgrenze	W _s	1					0,176
Schrumpfmaß	S	%					8
Undrainierte Scherfestigkeit 1)	Cu	kN/m²					
ockerste Lagerung	max n	1					
dichteste Lagerung	min n	1					
Lagerungsdichte	D	1					
einfache Proctordichte	ρ_{pr}	t/m³					
optimaler Wassergehalt	w _{pr}	1					
erreichbare Verdichtung bei w _n	D _{Pr}	%					
Steifemodul $\sigma = 0.05 - 0.1 \text{ MN/m}^2$	Es	MN/m²					
Steifemodul $\sigma = 0,1 - 0,2 \text{ MN/m}^2$	E _s	MN/m²					
Steifemodul $\sigma = 0.2 - 0.3 \text{ MN/m}^2$	E _s	MN/m²					
Reibungswinkel	φ	0					
Kohäsion	c	kN/m²					
_aborflügelscherfestigkeit 4)	τ _{fl}	kN/m²					
Einaxiale Druckfestigkeit	q _u	MN/m²					
Abrasivität Cerchar	CAI						
Abrasivität LCPC	LAK	g/t					
Glühverlust	V _{ql}	M%					
Veränderungsgrad ³⁾							
Durchlässigkeitsbeiwert	k _f	m/s					
Klassifizierung nach DIN 18196		, 5	TL/TM		TM	TL/TM	TL

¹⁾ Undrainierte Scherfestigkeit aus Ic [Kiekbusch, Bautechnik 76]

⁴⁾ Gemittelt aus 3 Versuchen an Ober- und Unterseite der Probe

⁵⁾ Undrainierter Versuch

Proiekt: Proiekt-Nr.: Anlage:

Baugebiet Wammesfeld, Öhringen 223299 7.3

²⁾ Wassergehalt der bindigen Bestandteile

³⁾ Nach DIN EN ISO 14689 Tab. 5 bei 24 h Wasserbedeckung

GMP Geotechnik GmbH & Co. KG - Beratende Ingenieure und Geologen - Hedanstraße 17- 97084 Würzburg - Tel.: +49(931) 6144-0 - Fax +49(931) 6144-200

Zusammenstellung der Laborversuche

Zι	ısar	nme	nstellung	g der Lac	orversu	cne	
Labornummer			24/0084	24/0089	24/0095	24/0097	24/0102
Entnahmestelle			RKS 18	RKS 19	RKS 20	RKS 20	RKS 22
Entnahmetiefe		m	3,00-3,80	2,20-3,40	1,10-2,10	3,40-4,80	2,00-3,80
Hauptbodenart		-	Schluff	Schluff	Schluff	Schluff	Schluff
Beimengung			Ton, Sand	Ton	Ton	Ton, Sand	Ton
			(q)	(q)	(q/A)	(q)	(q)
Farbe	-	1	hellbraun	grau	hellbraun	hellbraun	hellbraun
ungestört/gestört			gest.	gest.	gest.	gest.	gest.
Wichte des feuchten Bodens	γ	kN/m³			_		
Wassergehalt	W _n	1	0,275	0,269	0,224	0,281	0,276
Porenanteil	n	1					
Porenzahl	е	1					
Kornwichte	γs	kN/m³					
Kornkennziffer				2800	2800		2800
Ungleichförmigkeitszahl	U	1					
Wirksamer Korndurchmesser	d _w	mm					
Fließgrenze	W _L	1	0,321			0,370	
Ausrollgrenze	W _P	1	0,214			0,208	
Plastizitätszahl	I _P	1	0,107			0,162	
Konsistenzzahl	I _c	1	0,43			0,55	
Schrumpfgrenze	W _s	1	-, -			-,	
Schrumpfmaß	S	%					
Undrainierte Scherfestigkeit 1)	Cu	kN/m²					
ockerste Lagerung	max n	1					
dichteste Lagerung	min n	1					
Lagerungsdichte	D	1					
einfache Proctordichte	ρ_{pr}	t/m³					
optimaler Wassergehalt	W _{pr}	1					
erreichbare Verdichtung bei w _n	D _{Pr}	%					
Steifemodul $\sigma = 0.05 - 0.1 \text{ MN/m}^2$	E _s	MN/m²					
Steifemodul $\sigma = 0,1 - 0,2 \text{ MN/m}^2$	E _s	MN/m²					
Steifemodul $\sigma = 0.2 - 0.3 \text{ MN/m}^2$	E _s	MN/m²					
Reibungswinkel	<u>-s</u> φ	0					
Kohäsion	C	kN/m²					
_aborflügelscherfestigkeit 4)	τ _{fl}	kN/m²					
Einaxiale Druckfestigkeit	q _u	MN/m²					
Abrasivität Cerchar	CAI						
Abrasivität LCPC	LAK	g/t					
Glühverlust	V _{ql}	g/t М%					
Veränderungsgrad 3)	v _{gl}						
Durchlässigkeitsbeiwert	k _f	m/s					
Klassifizierung nach DIN 18196	Νf	111/3	TL			TM	

¹⁾ Undrainierte Scherfestigkeit aus Ic [Kiekbusch, Bautechnik 76]

Gemittelt aus 3 Versuchen an Ober- und Unterseite der Probe
 S Undr.
Proiekt:

⁵⁾ Undrainierter Versuch

Proiekt-Nr.: Anlage: **7.4**

²⁾ Wassergehalt der bindigen Bestandteile

³⁾ Nach DIN EN ISO 14689 Tab. 5 bei 24 h Wasserbedeckung

GMP Geotechnik GmbH & Co. KG - Beratende Ingenieure und Geologen - Hedanstraße 17- 97084 Würzburg - Tel.: +49(931) 6144-0 - Fax +49(931) 6144-200

Zι	ısar	nme	nstellunç	g der ∟ar	orversu	cne	
Labornummer			24/0105	24/0107	24/0111	24/0263	24/0268
Entnahmestelle			RKS 23	RKS 23	RKS 24	RKS 1	RKS 21
Entnahmetiefe		m	1,00-1,80	2,20-5,00	0,50-2,00	3,80-7,00	2,10-7,00
Hauptbodenart			Schluff	Schluff	Schluff	Schluff	Schluff
Beimengung			Ton, Sand	Ton	Ton, Sand	Ton, Kies	Ton, Sand
			(q)	(q)	(q)	(so)	(q)
Farbe			hellbraun	hellbraun	hellbraun	rotbräunlich	hellbraun
ungestört/gestört			gest.	gest.	gest.	gest.	gest.
Wichte des feuchten Bodens	γ	kN/m³					
Wassergehalt	Wn	1	0,191	0,253	0,247	0,264	0,246
Porenanteil	n	1					
Porenzahl	е	1					
Kornwichte	γs	kN/m³					
Kornkennziffer				2800			
Ungleichförmigkeitszahl	U	1					
Wirksamer Korndurchmesser	d _w	mm					
Fließgrenze	W _L	1	0,317		0,325	0,492	0,314
Ausrollgrenze	W _P	1	0,186		0,192	0,245	0,197
Plastizitätszahl	I _P	1	0,131		0,133	0,247	0,117
Konsistenzzahl	I _c	1	0,96		0,59	0,92	0,58
Schrumpfgrenze	W _s	1	0,137			-,-	
Schrumpfmaß	S	%	8				
Undrainierte Scherfestigkeit 1)	Cu	kN/m²	-				
ockerste Lagerung	max n	1					
dichteste Lagerung	min n	1					
_agerungsdichte	D	1					
einfache Proctordichte	ρ_{pr}	t/m³					
optimaler Wassergehalt	w _{pr}	1					
erreichbare Verdichtung bei w _n	D _{Pr}	%					
Steifemodul $\sigma = 0.05 - 0.1 \text{ MN/m}^2$	E _s	MN/m²					
Steifemodul $\sigma = 0,1 - 0,2 \text{ MN/m}^2$	E _s	MN/m²					
Steifemodul $\sigma = 0.2 - 0.3 \text{ MN/m}^2$	E _s	MN/m²					
Reibungswinkel	φ	0					
Kohäsion	C	kN/m²					
_aborflügelscherfestigkeit 4)	τ _{fl}	kN/m²					
Einaxiale Druckfestigkeit	q _u	MN/m²					
Abrasivität Cerchar	CAI						
Abrasivität LCPC	LAK	g/t					
Glühverlust	V _{ql}	ул М%					
Veränderungsgrad 3)							
Durchlässigkeitsbeiwert	k _f	m/s					
Klassifizierung nach DIN 18196	r\f	111/5	TL		TL	TM	TL

¹⁾ Undrainierte Scherfestigkeit aus Ic [Kiekbusch, Bautechnik 76]

⁴⁾ Gemittelt aus 3 Versuchen an Ober- und Unterseite der Probe ⁵⁾

5) Undrainierter Versuch

Proiekt: Proiekt-Nr.: Anlage:
Baugebiet Wammesfeld, Öhringen 223299 7.5

²⁾ Wassergehalt der bindigen Bestandteile

³⁾ Nach DIN EN ISO 14689 Tab. 5 bei 24 h Wasserbedeckung

Bestimmung des Wassergehaltes

durch Ofentrockung nach EN ISO 17892-1:2015-03

Projekt - Nr:	223299	Entnahmeart: gestört
Projekt:	Baugebiet Wammesfeld, Öhringen	Entnahme am: 13 21.12.2023
Ausgf. durch:	V.L Datum: 15 16.01.2024	

Labornummer	24/0043	24/0046	24/0049	24/0053	24/0055
Entnahmestelle:	RKS 2	RKS 4	RKS 6	RKS 7	RKS 8
Entnahmetiefe [m]:	1,00 - 4,80	1,00 - 4,90	0,20 - 3,00	1,50 - 5,00	1,00 - 3,00
Behälter Nr.	R10	F3	SVB	TZK	R6
Feuchte Probe + Behälter m+m _b [g]	322,67	286,84	296,15	279,12	283,11
Trock. Probe + Behälter m₀ + m₀ [g]	272,11	242,31	250,17	240,77	245,01
Behälter m₀ [g]	73,40	72,25	73,01	72,34	72,55
Wasser (ma+mb)-(md+mb)=mw [g]	50,56	44,53	45,98	38,35	38,10
Trockene Probe m _d [g]	198,71	170,06	177,16	168,43	172,46
Wassergehalt w=(mw/md).100 [%]	25,4	26,2	26,0	22,8	22,1

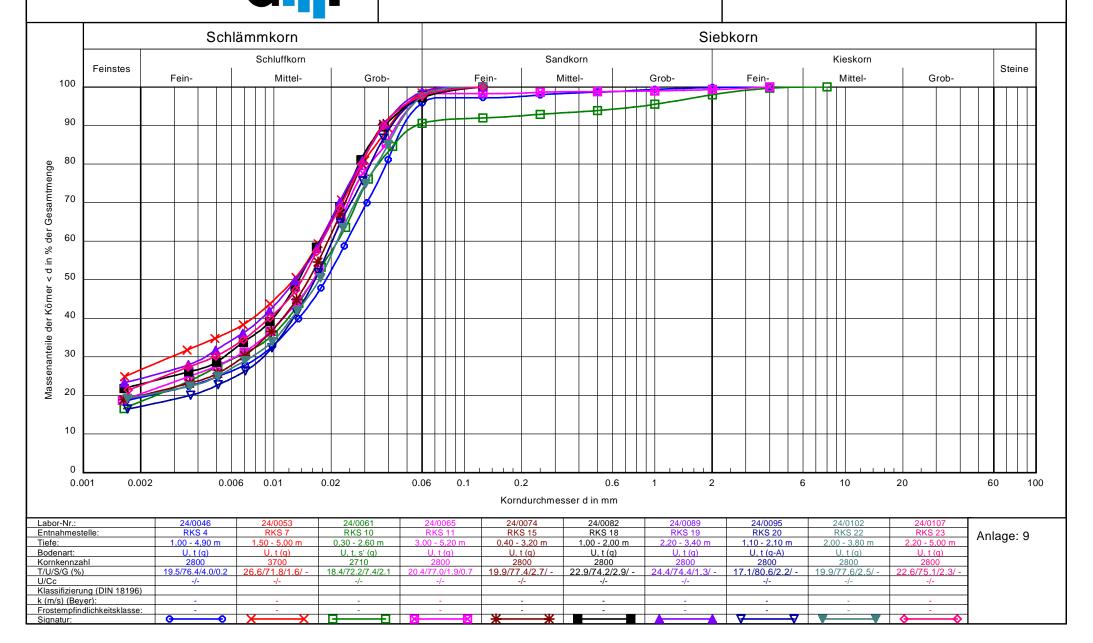
Labornummer	24/0059	24/0061	24/0064	24/0065	24/0068
Entnahmestelle:	RKS 9	RKS 10	RKS 11	RKS 11	RKS 12
Entnahmetiefe [m]:	3,00 - 6,40	0,30 - 2,60	2,50 - 3,00	3,00 - 5,20	2,30 - 4,00
Behälter Nr.	MM	R3	R4	H9	JDW
Feuchte Probe + Behälter m+m _b [g]	326,02	246,81	301,02	295,15	293,64
Trock. Probe + Behälter m₀ + m₀ [g]	275,63	210,98	251,80	252,96	241,87
Behälter m₅ [g]	72,81	72,45	73,31	72,14	72,58
Wasser (ma+mb)-(md+mb)=mw [g]	50,39	35,83	49,22	42,19	51,77
Trockene Probe m _d [g]	202,82	138,53	178,49	180,82	169,29
Wassergehalt w=(m _w /m _d).100 [%]	24,8	25,9	27,6	23,3	30,6

Labornummer	24/0072	24/0074	24/0077	24/0079	24/0082
Entnahmestelle:	RKS 14	RKS 15	RKS 16	RKS 17	RKS 18
Entnahmetiefe [m]:	1,90 - 3,00	0,40 - 3,20	0,30 - 3,00	0,30 - 3,00	1,00 - 2,00
Behälter Nr.	TBK	R2	Jo	PL	FL
Feuchte Probe + Behälter m+m _b [g]	321,98	313,36	303,61	301,46	276,01
Trock. Probe + Behälter m₀ + m₀ [g]	259,34	265,01	258,50	255,06	236,38
Behälter m₀ [g]	73,87	71,77	74,40	72,34	73,43
Wasser (ma+mb)-(md+mb)=mw [g]	62,64	48,35	45,11	46,40	39,63
Trockene Probe m _d [g]	185,47	193,24	184,10	182,72	162,95
Wassergehalt w=(m _w /m _d).100 [%]	33,8	25,0	24,5	25,4	24,3

Projekt:	Projekt-Nr.:	Anlage:
Baugebiet Wammesfeld, Öhringen	223299	8.1

	ockung nad	h EN ISO	17892-1:	2015-03	
Projekt - Nr: 223299			Entnahmeart:	gestört	
Projekt: Baugebiet Wammesfeld,	Öhringen		Entnahme am:	13.12.2023 - :	25.01.2024
Ausgf. durch: V.L Datum:	16 08.02.202	4			
Labornummer	24/0084	24/0089	24/0095	24/0097	24/0102
Entnahmestelle:	RKS 18	RKS 19	RKS 20	RKS 20	RKS 22
Entnahmetiefe [m]:	3,00 - 3,80	2,20 - 3,40	1,10 - 2,10	3,40 - 4,80	2,00 - 3,80
Behälter Nr.	H5	VC	X7	107	V9
Feuchte Probe + Behälter m+m _b [g]	341,44	292,63	188,76	209,52	221,23
Trock. Probe + Behälter m _d + m _b [g]	283,52	242,36	163,96	172,26	184,74
Behälter m₅ [g]	72,99	55,37	53,19	39,71	52,70
Wasser (m _a +m _b)-(m _d +m _b)=m _w [g]	57,92	50,27	24,80	37,26	36,49
Trockene Probe m _d [g]	210,53	186,99	110,77	132,55	132,04
Wassergehalt w=(m _w /m _d).100 [%]	27,5	26,9	22,4	28,1	27,6
Labornummer Entnahmestelle:	24/0105 RKS 23	24/0107 RKS 23	24/0111 RKS 24	24/0263 RKS 1	24/0268 RKS 21
Entnahmestelle:	RKS 23	RKS 23	RKS 24	RKS 1	RKS 21
Entnahmetiefe [m]:	1,00 - 1,80	2,20 - 5,00	0,50 - 2,00	3,80 - 7,00	2,10 - 7,00
Behälter Nr.	K2	103	P3	106	T8
E 1: D 1 D 1 "1: 11		207,99	231,13	156,96	
	178,03			•	205,20
Trock. Probe + Behälter m₁ + m♭ [g]	158,14	174,30	195,67	132,48	172,52
Trock. Probe + Behälter m₀ + m₀ [g] Behälter m₀ [g]	158,14 54,08	174,30 41,18	195,67 52,10	132,48 39,82	172,52 39,85
Trock. Probe + Behälter m _d + m _b [g] Behälter m _b [g] Wasser (m _a +m _b)-(m _d +m _b)=m _w [g]	158,14 54,08 19,89	174,30 41,18 33,69	195,67 52,10 35,46	132,48 39,82 24,48	172,52 39,85 32,68
Behälter m₀ [g]	158,14 54,08	174,30 41,18	195,67 52,10	132,48 39,82	172,52 39,85
Trock. Probe + Behälter md + mb [g] Behälter mb [g] Wasser (ma+mb)-(md+mb)=mw [g] Trockene Probe md [g] Wassergehalt w=(mw/md).100 [%]	158,14 54,08 19,89 104,06	174,30 41,18 33,69 133,12	195,67 52,10 35,46 143,57	132,48 39,82 24,48 92,66	172,52 39,85 32,68 132,67
Trock. Probe + Behälter md + mb [g] Behälter mb [g] Wasser (ma+mb)-(md+mb)=mw [g] Trockene Probe md [g]	158,14 54,08 19,89 104,06	174,30 41,18 33,69 133,12	195,67 52,10 35,46 143,57	132,48 39,82 24,48 92,66	172,52 39,85 32,68 132,67
Trock. Probe + Behälter md + mb [g] Behälter mb [g] Wasser (ma+mb)-(md+mb)=mw [g] Trockene Probe md [g] Wassergehalt w=(mw/md).100 [%] Labornummer Entnahmestelle:	158,14 54,08 19,89 104,06	174,30 41,18 33,69 133,12	195,67 52,10 35,46 143,57	132,48 39,82 24,48 92,66	172,52 39,85 32,68 132,67
Trock. Probe + Behälter md + mb [g] Behälter mb [g] Wasser (ma+mb)-(md+mb)=mw [g] Trockene Probe md [g] Wassergehalt w=(mw/md).100 [%] Labornummer	158,14 54,08 19,89 104,06	174,30 41,18 33,69 133,12	195,67 52,10 35,46 143,57	132,48 39,82 24,48 92,66	172,52 39,85 32,68 132,67
Trock. Probe + Behälter md + mb [g] Behälter mb [g] Wasser (ma+mb)-(md+mb)=mw [g] Trockene Probe md [g] Wassergehalt w=(mw/md).100 [%] Labornummer Entnahmestelle: Entnahmetiefe [m]: Behälter Nr.	158,14 54,08 19,89 104,06	174,30 41,18 33,69 133,12	195,67 52,10 35,46 143,57	132,48 39,82 24,48 92,66	172,52 39,85 32,68 132,67
Trock. Probe + Behälter md + mb [g] Behälter mb [g] Wasser (ma+mb)-(md+mb)=mw [g] Trockene Probe md [g] Wassergehalt w=(mw/md).100 [%] Labornummer Entnahmestelle: Entnahmetiefe [m]: Behälter Nr. Feuchte Probe + Behälter m+mb [g]	158,14 54,08 19,89 104,06	174,30 41,18 33,69 133,12	195,67 52,10 35,46 143,57	132,48 39,82 24,48 92,66	172,52 39,85 32,68 132,67
Trock. Probe + Behälter md + mb [g] Behälter mb [g] Wasser (ma+mb)-(md+mb)=mw [g] Trockene Probe md [g] Wassergehalt w=(mw/md).100 [%] Labornummer Entnahmestelle: Entnahmetiefe [m]: Behälter Nr. Feuchte Probe + Behälter md + mb [g] Trock. Probe + Behälter md + mb [g]	158,14 54,08 19,89 104,06	174,30 41,18 33,69 133,12	195,67 52,10 35,46 143,57	132,48 39,82 24,48 92,66	172,52 39,85 32,68 132,67
Trock. Probe + Behälter md + mb [g] Behälter mb [g] Wasser (ma+mb)-(md+mb)=mw [g] Trockene Probe md [g] Wassergehalt w=(mw/md).100 [%] Labornummer Entnahmestelle: Entnahmetiefe [m]: Behälter Nr. Feuchte Probe + Behälter md + mb [g] Trock. Probe + Behälter md + mb [g] Behälter mb [g]	158,14 54,08 19,89 104,06	174,30 41,18 33,69 133,12	195,67 52,10 35,46 143,57	132,48 39,82 24,48 92,66	172,52 39,85 32,68 132,67
Trock. Probe + Behälter md + mb [g] Behälter mb [g] Wasser (ma+mb)-(md+mb)=mw [g] Trockene Probe md [g] Wassergehalt w=(mw/md).100 [%] Labornummer Entnahmestelle: Entnahmetiefe [m]:	158,14 54,08 19,89 104,06	174,30 41,18 33,69 133,12	195,67 52,10 35,46 143,57	132,48 39,82 24,48 92,66	172,52 39,85 32,68 132,67

Projekt:	Projekt-Nr.:	Anlage:
Baugebiet Wammesfeld, Öhringen	223299	8.2

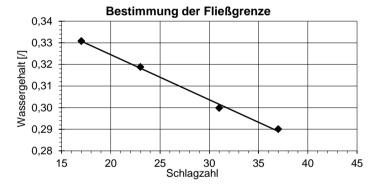

GMP Geotechnik GmbH & Co.KG

Beratende Ingenieure und Geologen Hedanstraße 17, 97084 Würzburg Tel. 0931/6144-0, Fax 0931/6144-200

Körnungslinie nach DIN EN ISO 17892-4

Projekt: Baugebiet Wammesfeld, Öhringen

Projekt-Nr.: 223299

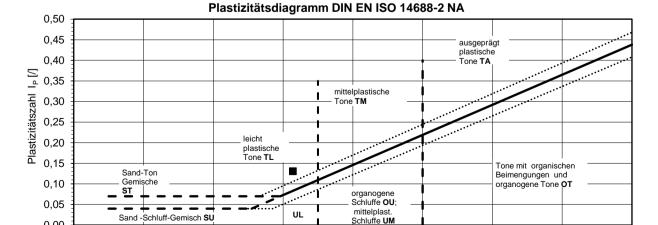


GMP Geotechnik GmbH Co. KG | Beratende Ingenieure und Geologen Hedanstraße 17 | 97084 Würzburg | Tel.: +49(931) 6144-0 | E-Mail: mail@gmp-geo.de

Bestimmung der Zustandsgrenzen (Fließgrenze, Ausrollgrenze) nach DIN EN ISO 17892-12						
Labor-Nr.: 24/0043 Entnommen am: 20.12.2024				w _{ges} [-]:	0,254	
Entnahmestelle:	RKS 2	Angeliefert am:		w _{<0,4} [-]:	0,254	
Tiefe [m u AP]:	1,00 - 4,80	Durchgeführt am:	19.01.2024	$\ddot{U} = 1 - (w_{ges}/w_{<0,4})$ [-]:	0,000	
Entnahmeart:	gestört	Durchgeführt von:	V.C			
Bodengruppe:	TL	Ausgewertet von:	V.L			

Bemerkung:

		Flie	ßgrenze		Ausrollgrenze			
	1. Probe	2. Probe	3. Probe	4. Probe	1. Probe	2. Probe	3. Probe	
Zahl der Schläge	17	23	31	37				
Feuchte Probe + Behälter m + m _b [g]	86,58	86,64	85,32	83,83	89,65	99,50		
Trock. Probe + Behälter m _d + m _b [g]	75,03	78,43	75,60	73,93	87,05	95,27		
Behälter m _b [g]	40,12	52,68	43,18	39,80	72,78	72,34		
Wasser $(m_a+mb) - (m_d + m_b) = m_w [g]$	11,55	8,21	9,72	9,90	2,60	4,23		
Trockene Probe m _d [g]	34,91	25,75	32,42	34,13	14,27	22,93		
Wassergehalt $w = (m_w / m_d) [/]$	0,331	0,319	0,300	0,290	0,182	0,184		


Wassergehalt $w_{<0,4}$ [/]: 0,254 Fließgrenze w_L [/]: 0,314 Ausrollgrenze w_P [/]: 0,183 Plastizitätszahl $I_P = w_L - w_P$ [/]: 0,131 Konsistenzzahl $I_{C,<0,4}$ = $(w_L - w_{<0,4})/I_P$ [/]: 0,459

0,7

Zustandsform nach DIN EN ISO 14688-2

	breiig	sehr weich	weich	steif	halbfe	st/fest	
		•					
0,	00 0,	25 0,	50 0,	75 1,	00 1,	25 1,5	50

Fließgrenze w_ [/]

Projekt:

Baugebiet Wammesfeld, Öhringen

Fließgrenze w_ [/]

Projekt-Nr.: Anlage:

223299 10.1

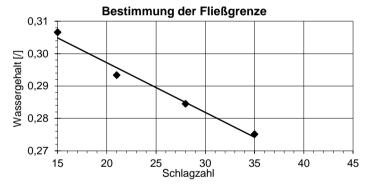
0,4

0,5

0,1

0,00 1

0,8

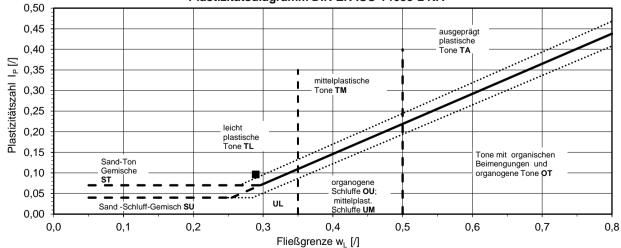


GMP Geotechnik GmbH Co. KG | Beratende Ingenieure und Geologen Hedanstraße 17 | 97084 Würzburg | Tel.: +49(931) 6144-0 | E-Mail: mail@gmp-geo.de

Bestimmung der Zustandsgrenzen (Fließgrenze, Ausrollgrenze) nach DIN EN ISO 17892-12								
Labor-Nr.:	Labor-Nr.: 24/0046 Entnommen am: 20.12.2023				0,262			
Entnahmestelle:	RKS 4	Angeliefert am:		w _{<0,4} [-]:	0,262			
Tiefe [m u AP]:	1,00 - 4,90	Durchgeführt am: 17.01.2024		$\ddot{U} = 1 - (w_{ges}/w_{<0,4})$ [-]:	0,000			
Entnahmeart:	gestört	Durchgeführt von:	V.C					
Bodengruppe:	ST*	Ausgewertet von:	V.L					

Bemerkung:

	Fließgrenze				Ausrollgrenze		
	1. Probe	2. Probe	3. Probe	4. Probe	1. Probe	2. Probe	3. Probe
Zahl der Schläge	15	21	28	35			
Feuchte Probe + Behälter m + m _b [g]	97,32	103,07	88,17	101,44	86,28	62,87	
Trock. Probe + Behälter m _d + m _b [g]	86,81	91,03	77,78	90,99	84,00	61,12	
Behälter m _b [g]	52,53	49,99	41,26	53,01	72,15	52,10	
Wasser $(m_a+mb) - (m_d + m_b) = m_w [g]$	10,51	12,04	10,39	10,45	2,28	1,75	
Trockene Probe m _d [g]	34,28	41,04	36,52	37,98	11,85	9,02	
Wassergehalt $w = (m_w / m_d) [/]$	0,307	0,293	0,285	0,275	0,192	0,194	·


Wassergehalt w_{<0,4} [/]: 0,262 Fließgrenze w_L [/]: 0,290 Ausrollgrenze w_P [/]: 0,193 Plastizitätszahl $I_P = w_L - w_P$ [/]: 0,096 Konsistenzzahl $I_{C,<0,4}$ = ($W_L - W_{<0,4}$)/ I_P [/]: 0,286

Zustandsform nach DIN EN ISO 14688-2

	breiig	sehr weich	weich	steif	halbfe	st/fest	
		•					
0,0	00,	25 0,	50 0,	75 1,	00 1,	25 1,50)

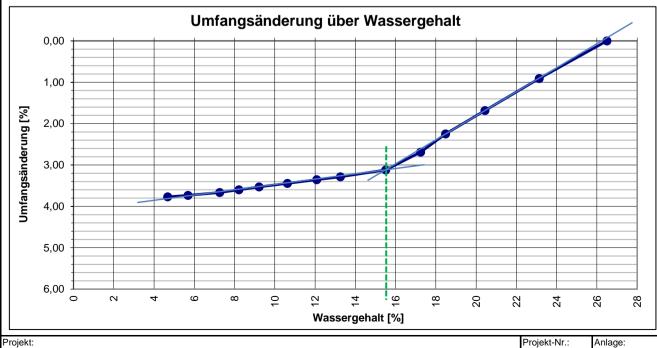
rojekt-Nr.: Anlage: Baugebiet Wammesfeld, Öhringen 223299 10.2.1

GMP Geotechnik GmbH & Co. KG - Beratende Ingenieure und Geologen - Hedanstraße 17 - 97084 Würzburg - Tel.: +49(931) 6144-0 - Fax +49(931) 6144-200

Bestimmung der Schrumpfgrenze

or-Nr.: 24/0046 Entnahmewassergehalt w _n		[%]:	26,2		
RKS 4	Ringdurchmesser	[cm]:	7,00		
gestört	Ringumfang	[cm]:	21,99		
1,00 - 4,90 m	Ringhöhe	[cm]:	1,40		
Schluff, tonig (q)	Probengewicht Beginn	[g]:	160,88		
20.12.2023	Tara (Gerät+Unterlage)	[g]:	993,25		
Herr Oechsner	Probe+Tara	[g]:	1103,00		
31.01.2024	Trockengewicht Probe	[g]:	89,13		
	RKS 4 gestört 1,00 - 4,90 m Schluff, tonig (q) 20.12.2023 Herr Oechsner	RKS 4 Ringdurchmesser gestört Ringumfang 1,00 - 4,90 m Ringhöhe Schluff, tonig (q) Probengewicht Beginn 20.12.2023 Tara (Gerät+Unterlage) Herr Oechsner Probe+Tara	RKS 4 Ringdurchmesser [cm]: gestört Ringumfang [cm]: 1,00 - 4,90 m Ringhöhe [cm]: Schluff, tonig (q) Probengewicht Beginn [g]: 20.12.2023 Tara (Gerät+Unterlage) [g]: Herr Oechsner Probe+Tara [g]:		

Wasser- gehalt [%]	Gewichts- änderung [%]	Umfangs- änderung [%]	Zeit- differenz [h]	Bemerkung
26,50	0,00	0,00	0,00	Nullmessung
23,13	27,38	0,91	2,00	
20,44	28,87	1,68	5,50	
18,48	29,96	2,25	7,00	
17,24	30,64	2,69	8,50	
15,51	31,61	3,12	9,75	Schrumpfgrenze
13,26	32,85	3,28	12,75	
12,08	33,50	3,36	14,25	
10,62	34,31	3,44	15,75	
9,22	35,09	3,53	17,25	
8,21	35,65	3,60	18,50	
7,26	36,18	3,67	20,00	
5,69	37,05	3,73	21,75	
4,68	37,61	3,77	23,25	Nach Ofentrocknung


Wassergehalt an der Schrumpfgrenze ws:

15,51

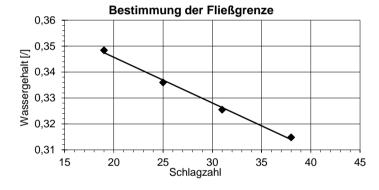
Restschrumpfmaß S: (Volumenbezogen)

11 [%]

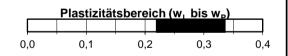
10.2.2

Projekt: Projekt-Nr.:

Baugebiet Wammesfeld, Öhringen 223299



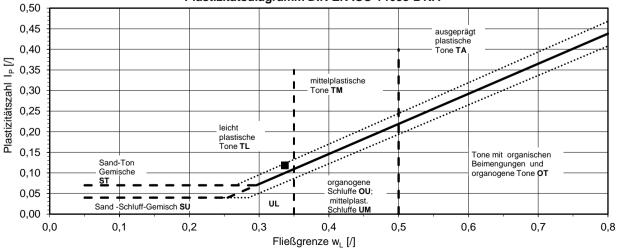
GMP Geotechnik GmbH Co. KG | Beratende Ingenieure und Geologen Hedanstraße 17 | 97084 Würzburg | Tel.: +49(931) 6144-0 | E-Mail: mail@gmp-geo.de


Bestimmung der Zustandsgrenzen (Fließgrenze, Ausrollgrenze) nach DIN EN ISO 17892-12								
Labor-Nr.:	24/0049	Entnommen am:	20.12.2023	w _{ges} [-]:	0,260			
Entnahmestelle:	RKS 6	Angeliefert am:		w _{<0,4} [-]:	0,260			
Tiefe [m u AP]:	0,20 - 3,00	Durchgeführt am:	19.01.2024	$\ddot{U} = 1 - (w_{ges}/w_{<0,4})$ [-]:	0,000			
Entnahmeart:	gestört	Durchgeführt von:	V.C					
Bodengruppe:	TL	Ausgewertet von:	V.L					

Bemerkung:

	Fließgrenze				Ausrollgrenze		
	1. Probe	2. Probe	3. Probe	4. Probe	1. Probe	2. Probe	3. Probe
Zahl der Schläge	19	25	31	38			
Feuchte Probe + Behälter m + m _b [g]	87,70	90,41	86,68	98,83	87,87	90,58	
Trock. Probe + Behälter m _d + m _b [g]	75,68	78,05	77,67	87,86	85,10	87,28	
Behälter m _b [g]	41,18	41,26	49,99	53,01	72,44	72,14	
Wasser $(m_a+mb) - (m_d + m_b) = m_w [g]$	12,02	12,36	9,01	10,97	2,77	3,30	
Trockene Probe m _d [g]	34,50	36,79	27,68	34,85	12,66	15,14	
Wassergehalt $w = (m_w / m_d) [/]$	0,348	0,336	0,326	0,315	0,219	0,218	



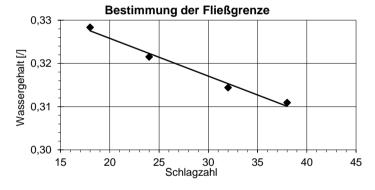

 $\label{eq:wassergehaltw} \begin{array}{ll} Wassergehalt\ w_{<0,4}\ \ [/]: & 0,260 \\ Fließgrenze\ w_L\ [/]: & 0,337 \\ Ausrollgrenze\ w_P\ [/]: & 0,218 \\ Plastizitätszahl\ l_P = w_L - w_P\ [/]: & 0,119 \\ Konsistenzzahl\ l_{C,<0,4} = (w_L - w_{<0,4})/l_P\ [/]: & 0,649 \\ \end{array}$

Zustandsform nach DIN EN ISO 14688-2

	breiig	sehr weich	weich	steif	halbfe	st/fest	
			•				
0,0	00 0,	25 0,	50 0,	75 1,	00 1,	25 1,50)

Projekt: Anlage:

Baugebiet Wammesfeld, Öhringen 223299 10.3



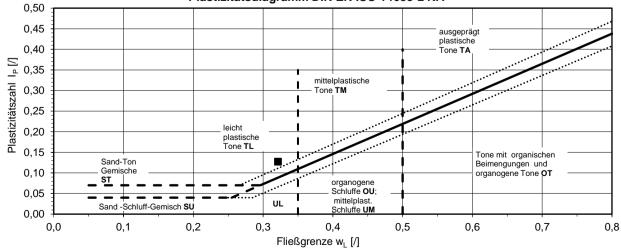
GMP Geotechnik GmbH Co. KG | Beratende Ingenieure und Geologen Hedanstraße 17 | 97084 Würzburg | Tel.: +49(931) 6144-0 | E-Mail: mail@gmp-geo.de

	Bestimmung der Zustandsgrenzen (Fließgrenze, Ausrollgrenze) nach DIN EN ISO 17892-12						
Labor-Nr.:	Labor-Nr.: 24/0055 Entnommen am: 20.12.2023 w _{ges} [-]: 0,221						
Entnahmestelle:	RKS 8	Angeliefert am:		w _{<0,4} [-]:	0,221		
Tiefe [m u AP]:	1,00 - 3,00	Durchgeführt am:	17.01.2024	$\ddot{U} = 1 - (w_{ges}/w_{<0,4})$ [-]:	0,000		
Entnahmeart:	gestört	Durchgeführt von:	V.C				
Bodengruppe:	TL	Ausgewertet von:	V.L				

Bemerkung:

	Fließgrenze			Ausrollgrenze			
	1. Probe	2. Probe	3. Probe	4. Probe	1. Probe	2. Probe	3. Probe
Zahl der Schläge	18	24	32	38			
Feuchte Probe + Behälter m + m _b [g]	78,48	99,80	81,18	87,79	86,73	83,11	
Trock. Probe + Behälter m _d + m _b [g]	69,26	88,26	71,15	76,96	84,40	81,47	
Behälter m _b [g]	41,18	52,37	39,25	42,13	72,45	72,98	
Wasser $(m_a+mb) - (m_d + m_b) = m_w [g]$	9,22	11,54	10,03	10,83	2,33	1,64	
Trockene Probe m _d [g]	28,08	35,89	31,90	34,83	11,95	8,49	
Wassergehalt $w = (m_w / m_d) [/]$	0,328	0,322	0,314	0,311	0,195	0,193	

 $\label{eq:wassergehalt} \begin{array}{ll} Wassergehalt \ w_{<0,4} \ \ [/]: & 0,221 \\ \\ Fließgrenze \ w_L \ [/]: & 0,321 \\ \\ Ausrollgrenze \ w_P \ [/]: & 0,194 \\ \\ Plastizitätszahl \ I_P = \ w_L - \ w_P \ [/]: & 0,127 \\ \end{array}$


Konsistenzzahl $I_{C,<0,4}=(w_L - w_{<0,4})/I_P$ [/]: 0,789

Zustandsform nach DIN EN ISO 14688-2

	breiig	sehr weich	weich	steif	halbfe	st/fest	ĺ
				•			
0,0	00 0,	25 0,	50 0,	75 1,	00 1,	25 1,5	50

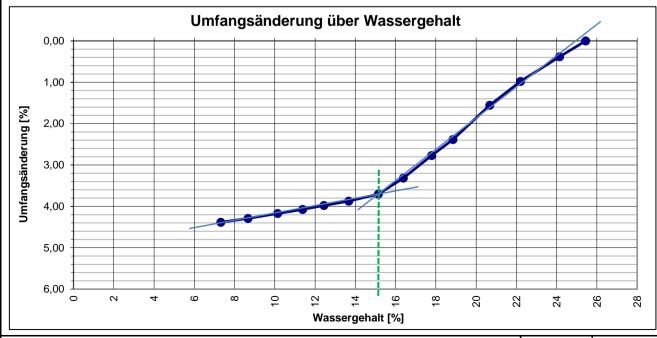
Projekt: Projekt-Nr.: Anlage:

Baugebiet Wammesfeld, Öhringen 223299 10.4.1

GMP Geotechnik GmbH & Co. KG - Beratende Ingenieure und Geologen - Hedanstraße 17 - 97084 Würzburg - Tel.: +49(931) 6144-0 - Fax +49(931) 6144-200

Bestimmung der Schrumpfgrenze

	Entnahmewassergehalt w _n Ringdurchmesser	[%]: [cm]:	22,1 7,00
		[cm]:	7.00
			.,
	Ringumfang	[cm]:	21,99
m	Ringhöhe	[cm]:	1,40
g, sandig (q)	Probengewicht Beginn	[g]:	106,60
	Tara (Gerät+Unterlage)	[g]:	1040,95
sner	Probe+Tara	[g]:	1147,55
	Trockengewicht Probe	[g]:	84,98
	g, sandig (q) ner	m Ringhöhe g, sandig (q) Probengewicht Beginn Tara (Gerät+Unterlage) ner Probe+Tara	m Ringhöhe [cm]: g, sandig (q) Probengewicht Beginn [g]: Tara (Gerät+Unterlage) [g]: ner Probe+Tara [g]:


Wasser- gehalt [%]	Gewichts- änderung [%]	Umfangs- änderung [%]	Zeit- differenz [h]	Bemerkung
25,44	0,00	0,00	0,00	Nullmessung
24,15	1,03	0,38	1,50	
22,21	2,58	0,98	3,00	
20,68	3,80	1,56	5,50	
18,85	5,25	2,39	6,75	
17,79	6,10	2,77	8,25	
16,38	7,22	3,31	9,75	
15,14	8,21	3,70	11,25	Schrumpfgrenze
13,67	9,38	3,87	12,75	
12,44	10,37	3,98	14,25	
11,38	11,21	4,07	15,50	
10,14	12,20	4,17	17,00	
8,67	13,37	4,29	18,75	•
7,32	14,45	4,38	20,25	Nach Ofentrocknung

Wassergehalt an der Schrumpfgrenze ws:

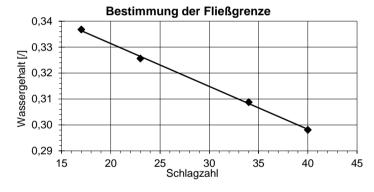
15,14

Restschrumpfmaß S: (Volumenbezogen)

10 [%]

Baugebiet Wammesfeld, Öhringen

Projekt-Nr.: Anlage: 223299 **10.4.2**

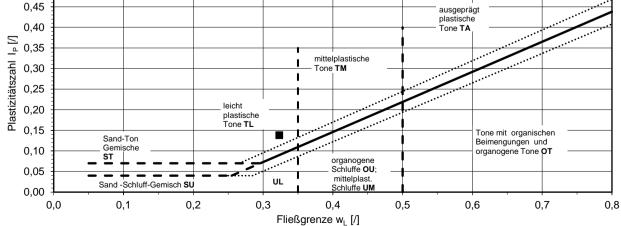


GMP Geotechnik GmbH Co. KG | Beratende Ingenieure und Geologen Hedanstraße 17 | 97084 Würzburg | Tel.: +49(931) 6144-0 | E-Mail: mail@gmp-geo.de

	Bestimmung der Zustandsgrenzen (Fließgrenze, Ausrollgrenze) nach DIN EN ISO 17892-12						
Labor-Nr.:	24/0059	Entnommen am:	20.12.2023	w _{ges} [-]:	0,248		
Entnahmestelle:	RKS 9	Angeliefert am:		W _{<0,4} [-]:	0,248		
Tiefe [m u AP]:	3,00 - 6,40	Durchgeführt am:	18.01.2024	$\ddot{U} = 1 - (w_{ges}/w_{<0,4})$ [-]:	0,000		
Entnahmeart:	gestört	Durchgeführt von:	V.C				
Bodengruppe:	TL	Ausgewertet von:	V.L				

Bemerkung:

	Fließgrenze			Ausrollgrenze			
_	1. Probe	2. Probe	3. Probe	4. Probe	1. Probe	2. Probe	3. Probe
Zahl der Schläge	17	23	34	40			
Feuchte Probe + Behälter m + m _b [g]	81,67	98,02	93,98	82,93	64,14	53,32	
Trock. Probe + Behälter m _d + m _b [g]	71,21	86,74	82,03	73,03	62,40	51,58	
Behälter m _b [g]	40,15	52,10	43,33	39,82	53,02	42,13	
Wasser $(m_a+mb) - (m_d + m_b) = m_w [g]$	10,46	11,28	11,95	9,90	1,74	1,74	
Trockene Probe m _d [g]	31,06	34,64	38,70	33,21	9,38	9,45	
Wassergehalt $w = (m_w / m_d) [/]$	0,337	0,326	0,309	0,298	0,186	0,184	

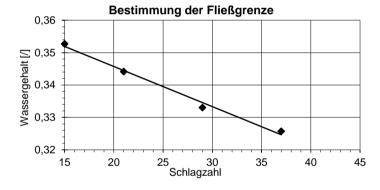

 $\label{eq:wassergehalt} \begin{array}{ll} Wassergehalt \ w_{<0,4} \ \ [/]: & 0,248 \\ Fließgrenze \ w_L \ [/]: & 0,323 \\ Ausrollgrenze \ w_P \ [/]: & 0,185 \\ Plastizitätszahl \ l_P = \ w_L - \ w_P \ [/]: & 0,138 \\ Konsistenzzahl \ l_{C,<0,4} = \ (w_L - \ w_{<0,4})/l_P \ [/]: & 0,543 \\ \end{array}$

Zustandsform nach DIN EN ISO 14688-2

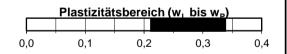
	breiig	sehr weich	weich	steif	halbfe	st/fest	
			•				
0,0	00 0,	25 0,	50 0,	75 1,	00 1,	25 1,	50

Projekt: Projekt-Nr.: Anlage:

Baugebiet Wammesfeld, Öhringen 223299 10.5

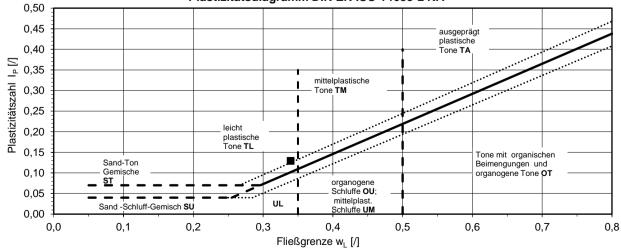


GMP Geotechnik GmbH Co. KG | Beratende Ingenieure und Geologen Hedanstraße 17 | 97084 Würzburg | Tel.: +49(931) 6144-0 | E-Mail: mail@gmp-geo.de


	Bestimmung der Zustandsgrenzen (Fließgrenze, Ausrollgrenze) nach DIN EN ISO 17892-12						
Labor-Nr.:	24/0064	Entnommen am:	21.12.2023	w _{ges} [-]:	0,276		
Entnahmestelle:	RKS 11	Angeliefert am:		w _{<0,4} [-]:	0,276		
Tiefe [m u AP]:	2,50 - 3,00	Durchgeführt am:	17.01.2024	$\ddot{U} = 1 - (w_{ges}/w_{<0,4})$ [-]:	0,000		
Entnahmeart:	gestört	Durchgeführt von:	V.C				
Bodengruppe:	Bodengruppe: TL Ausgewertet von: V.L						

Bemerkung:

	Fließgrenze			Ausrollgrenze			
_	1. Probe	2. Probe	3. Probe	4. Probe	1. Probe	2. Probe	3. Probe
Zahl der Schläge	15	21	29	37			
Feuchte Probe + Behälter m + m _b [g]	93,66	94,24	87,20	83,80	86,61	89,68	
Trock. Probe + Behälter $m_d + m_b$ [g]	83,10	84,07	76,24	73,37	84,50	86,59	
Behälter m _b [g]	53,16	54,52	43,33	41,35	74,42	71,97	
Wasser $(m_a+mb) - (m_d + m_b) = m_w [g]$	10,56	10,17	10,96	10,43	2,11	3,09	
Trockene Probe m _d [g]	29,94	29,55	32,91	32,02	10,08	14,62	
Wassergehalt $w = (m_w / m_d) [/]$	0,353	0,344	0,333	0,326	0,209	0,211	


 $\label{eq:wassergehalt} \begin{array}{ll} Wassergehalt \ w_{<0,4} \ \ [/]: & 0,276 \\ Fließgrenze \ w_{L} \ [/]: & 0,340 \\ Ausrollgrenze \ w_{P} \ [/]: & 0,210 \\ Plastizitätszahl \ l_{P} = w_{L} - w_{P} \ [/]: & 0,129 \\ Konsistenzzahl \ l_{C,<0,4} = (w_{L} - w_{<0,4})/l_{P} \ [/]: & 0,492 \\ \end{array}$

Zustandsform nach DIN EN ISO 14688-2

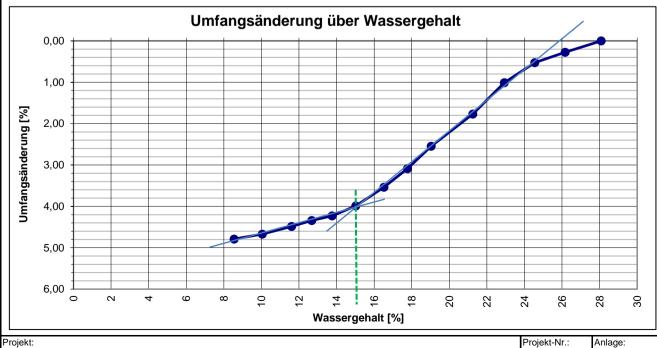
	breiig	sehr weich	weich	steif	halbfe	st/fest
		•				
0,0	00 0,	25 0,	50 0,	75 1,	00 1,:	25 1,5

Projekt: Projekt-Nr.: Anlage:
Baugebiet Wammesfeld, Öhringen 223299 10.6.1

GMP Geotechnik GmbH & Co. KG - Beratende Ingenieure und Geologen - Hedanstraße 17 - 97084 Würzburg - Tel.: +49(931) 6144-0 - Fax +49(931) 6144-200

Bestimmung der Schrumpfgrenze

24/0064	Entnahmewassergehalt w _n	[%]:	27,6
RKS 11	Ringdurchmesser	[cm]:	7,00
gestört	Ringumfang	[cm]:	21,99
2,50 - 3,00 m	Ringhöhe	[cm]:	1,40
Schluff, tonig, sandig (q)	Probengewicht Beginn	[g]:	105,25
21.12.2023	Tara (Gerät+Unterlage)	[g]:	978,55
Herr Oechsner	Probe+Tara	[g]:	1083,80
31.01.2024	Trockengewicht Probe	[g]:	83,42
	RKS 11 gestört 2,50 - 3,00 m Schluff, tonig, sandig (q) 21.12.2023 Herr Oechsner	RKS 11 Ringdurchmesser gestört Ringumfang 2,50 - 3,00 m Ringhöhe Schluff, tonig, sandig (q) Probengewicht Beginn 21.12.2023 Tara (Gerät+Unterlage) Herr Oechsner Probe+Tara	RKS 11 Ringdurchmesser [cm]: gestört Ringumfang [cm]: 2,50 - 3,00 m Ringhöhe [cm]: Schluff, tonig, sandig (q) Probengewicht Beginn [g]: 21.12.2023 Tara (Gerät+Unterlage) [g]: Herr Oechsner Probe+Tara [g]:


Wasser- gehalt [%]	Gewichts- änderung [%]	Umfangs- änderung [%]	Zeit- differenz [h]	Bemerkung
28,09	0,00	0,00	0,00	Nullmessung
26,17	1,52	0,27	1,50	
24,55	2,80	0,53	3,00	
22,93	4,09	1,01	4,50	
21,25	5,42	1,77	7,00	
19,04	7,17	2,55	8,50	
17,78	8,17	3,09	10,00	
16,52	9,17	3,54	11,50	
15,02	10,36	3,99	13,00	Schrumpfgrenze
13,76	11,35	4,23	14,50	
12,68	12,21	4,34	15,75	
11,60	13,06	4,48	17,25	
10,05	14,30	4,67	19,00	
8,55	15,49	4,79	20,75	Nach Ofentrocknung

Wassergehalt an der Schrumpfgrenze ws:

15,02

Restschrumpfmaß S: (Volumenbezogen)

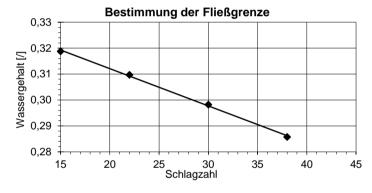
14 [%]

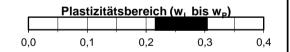
Projekt:

Baugebiet Wammesfeld, Öhringen 22329

223299

10.6.2

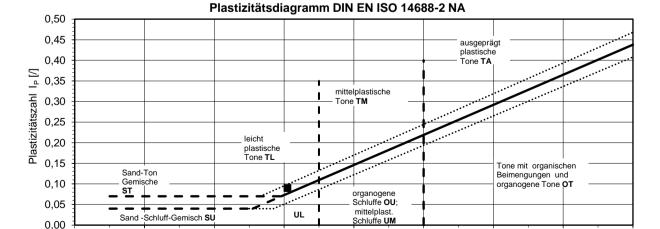



GMP Geotechnik GmbH Co. KG | Beratende Ingenieure und Geologen Hedanstraße 17 | 97084 Würzburg | Tel.: +49(931) 6144-0 | E-Mail: mail@gmp-geo.de

	Bestimmung der Zustandsgrenzen (Fließgrenze, Ausrollgrenze) nach DIN EN ISO 17892-12									
Labor-Nr.:	24/0068	Entnommen am:	21.12.2023	w _{ges} [-]:	0,293					
Entnahmestelle:	RKS 12	Angeliefert am:		w _{<0,4} [-]:	0,293					
Tiefe [m u AP]:	2,30 - 4,00	Durchgeführt am:	18.01.2024	$\ddot{U} = 1 - (w_{ges}/w_{<0,4})$ [-]:	0,000					
Entnahmeart:	gestört	Durchgeführt von:	V.C							
Bodengruppe:	ST*	Ausgewertet von:	V.L							

Bemerkung:

		Flie	ßgrenze		Α	usrollgrenz	ze
	1. Probe	2. Probe	3. Probe	4. Probe	1. Probe	2. Probe	3. Probe
Zahl der Schläge	15	22	30	38			
Feuchte Probe + Behälter m + m _b [g]	96,89	87,39	99,58	99,75	85,70	87,54	
Trock. Probe + Behälter m _d + m _b [g]	86,54	76,60	88,77	89,22	83,70	84,80	
Behälter m _b [g]	54,07	41,76	52,52	52,37	74,44	71,98	
Wasser $(m_a+mb) - (m_d + m_b) = m_w [g]$	10,35	10,79	10,81	10,53	2,00	2,74	
Trockene Probe m _d [g]	32,47	34,84	36,25	36,85	9,26	12,82	
Wassergehalt $w = (m_w / m_d) [/]$	0,319	0,310	0,298	0,286	0,216	0,214	·



0,7

Zustandsform nach DIN EN ISO 14688-2

	breiig sehr weich		weich	steif	halbfest/fest			
	•]
0,	00	0,2	25 0,	50 0,	, 75 1,	00 1,	25 1,	,50

Fließgrenze w_ [/]

Projekt:

Baugebiet Wammesfeld, Öhringen

Fließgrenze w_ [/]

Projekt-Nr.: Anlage:
223299 10.7

0,4

0,5

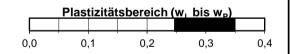
0,3

0,1

0,0

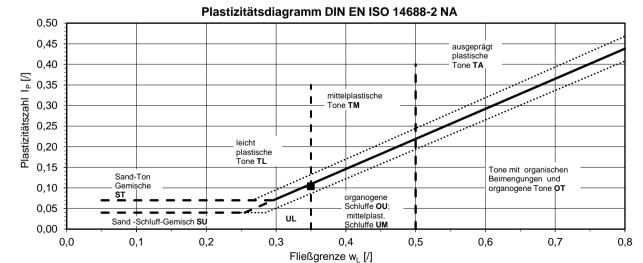
0,8

GMP Geotechnik GmbH Co. KG | Beratende Ingenieure und Geologen Hedanstraße 17 | 97084 Würzburg | Tel.: +49(931) 6144-0 | E-Mail: mail@gmp-geo.de


	Bestimmung der Zustandsgrenzen (Fließgrenze, Ausrollgrenze) nach DIN EN ISO 17892-12									
Labor-Nr.:	24/0072	Entnommen am:	19.12.2023	w _{ges} [-]:	0,338					
Entnahmestelle:	RKS 14	Angeliefert am:		w _{<0,4} [-]:	0,338					
Tiefe [m u AP]:	1,90 - 3,00	Durchgeführt am:	18.01.2024	$\ddot{U} = 1 - (w_{ges}/w_{<0,4})$ [-]:	0,000					
Entnahmeart:	gestört	Durchgeführt von:	V.C							
Bodengruppe:	TL/TM	Ausgewertet von:	V.L							

Bemerkung:

		Flie	ßgrenze		Ausroligrenze			
	1. Probe	2. Probe	3. Probe	4. Probe	1. Probe	2. Probe	3. Probe	
Zahl der Schläge	15	22	29	36				
Feuchte Probe + Behälter m + m _b [g]	85,31	91,29	98,14	101,22	87,30	87,35		
Trock. Probe + Behälter m _d + m _b [g]	73,87	78,42	86,49	89,72	84,53	84,36		
Behälter m _b [g]	43,34	42,14	52,10	54,53	73,32	72,15		
Wasser $(m_a+mb) - (m_d + m_b) = m_w [g]$	11,44	12,87	11,65	11,50	2,77	2,99		
Trockene Probe m _d [g]	30,53	36,28	34,39	35,19	11,21	12,21		
Wassergehalt $w = (m_w / m_d) [/]$	0,375	0,355	0,339	0,327	0,247	0,245		



 $\label{eq:wassergehalt} \begin{array}{ll} Wassergehalt \ w_{<0,4} \ \ [\prime]: & 0,338 \\ Fließgrenze \ w_L \ [\prime]: & 0,350 \\ Ausrollgrenze \ w_P \ [\prime]: & 0,246 \\ Plastizitätszahl \ I_P = \ w_L - \ w_P \ [\prime]: & 0,104 \\ Konsistenzzahl \ I_{C,<0,4} = \ (w_L - \ w_{<0,4}) / I_P \ \ [\prime]: & 0,114 \\ \end{array}$

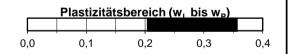
Zustandsform nach DIN EN ISO 14688-2

	breiig	sehr weich	weich	steif	halbfe	st/fest	
	•						
0,	00 0,	25 0,	50 0,	75 1,	00 1,	25 1,50	0

Projekt: Projekt-Nr.: Anlage:

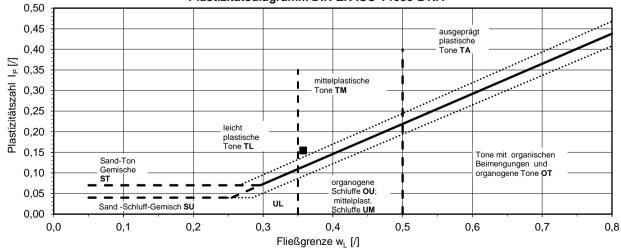
Baugebiet Wammesfeld, Öhringen 223299 10.8

GMP Geotechnik GmbH Co. KG | Beratende Ingenieure und Geologen Hedanstraße 17 | 97084 Würzburg | Tel.: +49(931) 6144-0 | E-Mail: mail@gmp-geo.de


	Bestimmung der Zustandsgrenzen (Fließgrenze, Ausrollgrenze) nach DIN EN ISO 17892-12									
Labor-Nr.:	24/0077	Entnommen am:	19.12.2023	w _{ges} [-]:	0,245					
Entnahmestelle:	RKS 16	Angeliefert am:		w _{<0,4} [-]:	0,245					
Tiefe [m u AP]:	0,30 - 3,00	Durchgeführt am:	19.01.2024	$\ddot{U} = 1 - (w_{ges}/w_{<0,4})$ [-]:	0,000					
Entnahmeart:	gestört	Durchgeführt von:	V.C							
Bodengruppe:	Bodengruppe: TM Ausgewertet von: V.L									

Bemerkung:

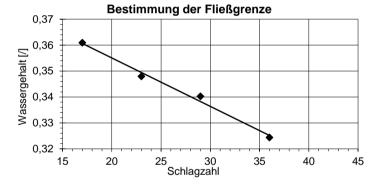
		Flie	ßgrenze		Α	usrollgrenz	ze
_	1. Probe	2. Probe	3. Probe	4. Probe	1. Probe	2. Probe	3. Probe
Zahl der Schläge	16	24	30	36			
Feuchte Probe + Behälter m + m _b [g]	94,35	82,94	89,60	90,83	83,75	89,14	
Trock. Probe + Behälter m _d + m _b [g]	83,21	71,93	80,02	81,18	81,72	86,50	
Behälter m _b [g]	53,44	41,36	52,54	52,39	71,79	73,41	
Wasser $(m_a+mb) - (m_d + m_b) = m_w [g]$	11,14	11,01	9,58	9,65	2,03	2,64	
Trockene Probe m _d [g]	29,77	30,57	27,48	28,79	9,93	13,09	
Wassergehalt $w = (m_w / m_d) [/]$	0,374	0,360	0,349	0,335	0,204	0,202	


Wassergehalt w_{<0,4} [/]: 0,245 Fließgrenze w_L [/]: 0,357 Ausrollgrenze w_P [/]: 0,203 Plastizitätszahl $I_P = w_L - w_P$ [/]: 0,154 Konsistenzzahl $I_{C,<0,4}$ = ($W_L - W_{<0,4}$)/ I_P [/]: 0,728

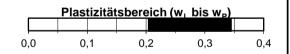
Zustandsform nach DIN EN ISO 14688-2

	breiig	sehr weich weich		steif	halbfest/fest		
			•				
0,0	00 0,	25 0,	50 0,	75 1,	00 1,	25 1,5	50

rojekt-Nr.: Anlage: Baugebiet Wammesfeld, Öhringen 10.9 223299

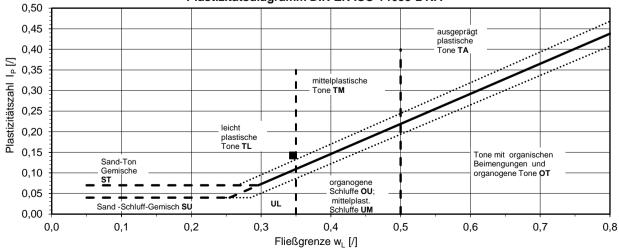


GMP Geotechnik GmbH Co. KG | Beratende Ingenieure und Geologen Hedanstraße 17 | 97084 Würzburg | Tel.: +49(931) 6144-0 | E-Mail: mail@gmp-geo.de


	Bestimmung der Zustandsgrenzen (Fließgrenze, Ausrollgrenze) nach DIN EN ISO 17892-12									
Labor-Nr.:	24/0079	19.12.2023	w _{ges} [-]:	0,254						
Entnahmestelle:	RKS 17	Angeliefert am:		W _{<0,4} [-]:	0,254					
Tiefe [m u AP]:	0,40 - 3,00	Durchgeführt am:	18.01.2024	$\ddot{U} = 1 - (w_{ges}/w_{<0,4})$ [-]:	0,000					
Entnahmeart:	gestört	Durchgeführt von:	V.C							
Bodengruppe:	TL/TM	Ausgewertet von:	V.L							

Bemerkung:

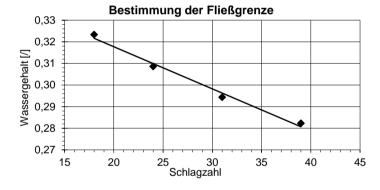
		Flie	ßgrenze		Ausroligrenze			
	1. Probe	2. Probe	3. Probe	4. Probe	1. Probe	2. Probe	3. Probe	
Zahl der Schläge	17	23	29	36				
Feuchte Probe + Behälter m + m _b [g]	120,43	116,62	111,33	114,06	85,92	89,38		
Trock. Probe + Behälter m _d + m _b [g]	107,79	105,36	101,82	103,82	83,97	86,55		
Behälter m _b [g]	72,77	73,00	73,87	72,25	74,38	72,60		
Wasser $(m_a+mb) - (m_d + m_b) = m_w [g]$	12,64	11,26	9,51	10,24	1,95	2,83		
Trockene Probe m _d [g]	35,02	32,36	27,95	31,57	9,59	13,95		
Wassergehalt $w = (m_w / m_d) [/]$	0,361	0,348	0,340	0,324	0,203	0,203	·	


 $\label{eq:wassergehalt} \begin{array}{ll} Wassergehalt \ w_{<0,4} \ \ [/]: & 0,254 \\ Fließgrenze \ w_L \ [/]: & 0,346 \\ Ausrollgrenze \ w_P \ [/]: & 0,203 \\ Plastizitätszahl \ I_P = \ w_L - \ w_P \ [/]: & 0,143 \\ Konsistenzzahl \ I_{C,<0,4} = \ (w_L - \ w_{<0,4})/I_P \ [/]: & 0,643 \\ \end{array}$

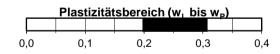
Zustandsform nach DIN EN ISO 14688-2

	breiig	sehr weich	weich	steif	halbfe	st/fest	
			•				
0,	00 0,	25 0,	50 0,	75 1,	00 1,	25 1,50	i

Projekt: Projekt-Nr.: Anlage:
Baugebiet Wammesfeld, Öhringen 223299 10.10

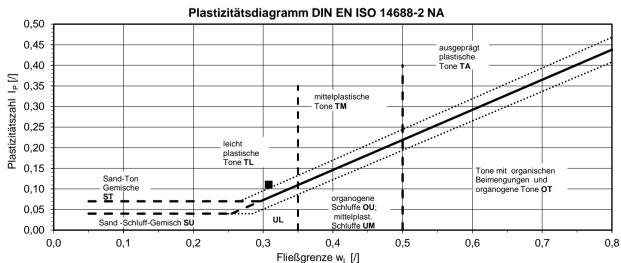


GMP Geotechnik GmbH Co. KG | Beratende Ingenieure und Geologen Hedanstraße 17 | 97084 Würzburg | Tel.: +49(931) 6144-0 | E-Mail: mail@gmp-geo.de


	Bestimmung der Zustandsgrenzen (Fließgrenze, Ausrollgrenze) nach DIN EN ISO 17892-12							
Labor-Nr.:	24/0082	13.12.2023	w _{ges} [-]:	0,243				
Entnahmestelle:	RKS 18	Angeliefert am:		w _{<0,4} [-]:	0,243			
Tiefe [m u AP]:	1,00 - 2,00	Durchgeführt am:	18.01.2024	$\ddot{U} = 1 - (w_{ges}/w_{<0,4})$ [-]:	0,000			
Entnahmeart:	gestört	Durchgeführt von:	V.C					
Bodengruppe:	TL	Ausgewertet von:	V.L					

Bemerkung:

	Fließgrenze				Ausrollgrenze		
	1. Probe	2. Probe	3. Probe	4. Probe	1. Probe	2. Probe	3. Probe
Zahl der Schläge	18	24	31	39			
Feuchte Probe + Behälter m + m _b [g]	90,05	80,27	99,33	94,62	65,85	92,11	
Trock. Probe + Behälter m _d + m _b [g]	80,90	71,01	88,89	85,39	63,89	88,94	
Behälter m _b [g]	52,60	41,00	53,42	52,69	54,00	72,80	
Wasser $(m_a+mb) - (m_d + m_b) = m_w [g]$	9,15	9,26	10,44	9,23	1,96	3,17	
Trockene Probe m _d [g]	28,30	30,01	35,47	32,70	9,89	16,14	
Wassergehalt $w = (m_w / m_d) [/]$	0,323	0,309	0,294	0,282	0,198	0,196	·



Wassergehalt $w_{<0,4}$ [/]: 0,243 Fließgrenze w_L [/]: 0,308 Ausrollgrenze w_P [/]: 0,197 Plastizitätszahl $I_P = w_L - w_P$ [/]: 0,111 Konsistenzzahl $I_{C,<0,4} = (w_L - w_{<0,4})/I_P$ [/]: 0,587

Zustandsform nach DIN EN ISO 14688-2

	breiig	sehr weich	weich	steif	halbfe	st/fest	
			*				
0,0	00 0,	25 0,	50 0,	75 1,	00 1,	25 1,50)

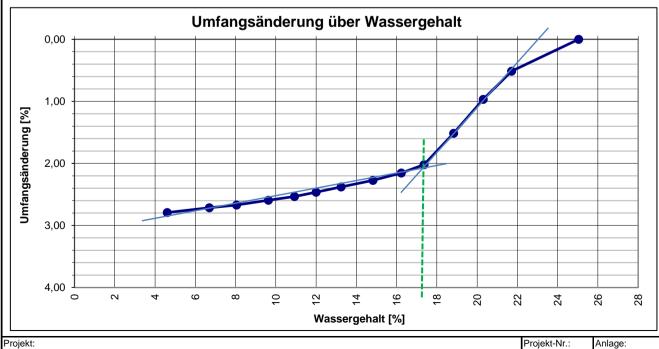
Projekt: Projekt-Nr.: Anlage:

Baugebiet Wammesfeld, Öhringen 223299 10.11.1

GMP Geotechnik GmbH & Co. KG - Beratende Ingenieure und Geologen - Hedanstraße 17 - 97084 Würzburg - Tel.: +49(931) 6144-0 - Fax +49(931) 6144-200

Bestimmung der Schrumpfgrenze

24/0082	Entnahmewassergehalt w _n	[%]:	24,3
RKS 18	Ringdurchmesser	[cm]:	7,00
gestört	Ringumfang	[cm]:	21,99
1,00 - 2,00 m	Ringhöhe	[cm]:	1,40
Schluff, tonig (q)	Probengewicht Beginn	[g]:	110,75
13.12.2023	Tara (Gerät+Unterlage)	[g]:	976,30
Herr Oechsner	Probe+Tara	[g]:	1087,05
05.02.2024	Trockengewicht Probe	[g]:	88,57
	RKS 18 gestört 1,00 - 2,00 m Schluff, tonig (q) 13.12.2023 Herr Oechsner	RKS 18 Ringdurchmesser gestört Ringumfang 1,00 - 2,00 m Ringhöhe Schluff, tonig (q) Probengewicht Beginn 13.12.2023 Tara (Gerät+Unterlage) Herr Oechsner Probe+Tara	RKS 18 Ringdurchmesser [cm]: gestört Ringumfang [cm]: 1,00 - 2,00 m Ringhöhe [cm]: Schluff, tonig (q) Probengewicht Beginn [g]: 13.12.2023 Tara (Gerät+Unterlage) [g]: Herr Oechsner Probe+Tara [g]:


Wasser- gehalt [%]	Gewichts- änderung [%]	Umfangs- änderung [%]	Zeit- differenz [h]	Bemerkung
25,04	0,00	0,00	0,00	Nullmessung
21,71	2,66	0,51	3,25	
20,30	3,79	0,97	4,75	
18,83	4,97	1,51	6,25	
17,36	6,14	2,02	7,75	Schrumpfgrenze
16,24	7,04	2,16	9,25	
14,82	8,17	2,27	10,75	
13,24	9,44	2,38	12,25	
12,00	10,43	2,46	13,75	
10,93	11,29	2,53	15,00	
9,63	12,33	2,59	16,50	
8,05	13,59	2,67	18,50	
6,70	14,67	2,71	20,25	
4,61	16,34	2,79	23,25	Nach Ofentrocknung

Wassergehalt an der Schrumpfgrenze ws:

17,36

Restschrumpfmaß S: (Volumenbezogen)

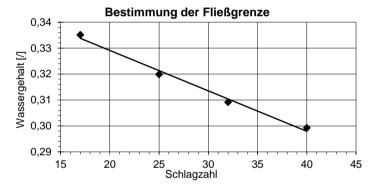
8 [%]

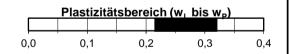
Projekt:

Baugebiet Wammesfeld, Öhringen

Projekt-Nr.: 223299

10.11.2

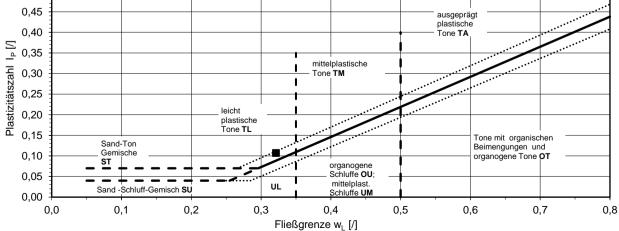



GMP Geotechnik GmbH Co. KG | Beratende Ingenieure und Geologen Hedanstraße 17 | 97084 Würzburg | Tel.: +49(931) 6144-0 | E-Mail: mail@gmp-geo.de

	Bestimmung der Zustandsgrenzen (Fließgrenze, Ausrollgrenze) nach DIN EN ISO 17892-12							
Labor-Nr.: 24/0084 Entnommen am: 13.12.2023 Wges [-]:								
Entnahmestelle:	RKS 18	Angeliefert am:		w _{<0,4} [-]:	0,275			
Tiefe [m u AP]:	3,00 - 3,80	Durchgeführt am:	19.01.2024	$\ddot{U} = 1 - (w_{ges}/w_{<0,4})$ [-]:	0,000			
Entnahmeart: gestört		Durchgeführt von:	V.C					
Bodengruppe:	TL	Ausgewertet von:	V.L					

Bemerkung:

	Fließgrenze			Ausrollgrenze			
	1. Probe	2. Probe	3. Probe	4. Probe	1. Probe	2. Probe	3. Probe
Zahl der Schläge	17	25	32	40			
Feuchte Probe + Behälter m + m _b [g]	86,18	83,39	85,83	95,31	79,43	89,18	
Trock. Probe + Behälter m _d + m _b [g]	74,55	73,87	75,23	85,39	77,14	86,14	
Behälter m _b [g]	39,85	44,11	40,94	52,24	66,41	71,99	
Wasser $(m_a+mb) - (m_d + m_b) = m_w [g]$	11,63	9,52	10,60	9,92	2,29	3,04	
Trockene Probe m _d [g]	34,70	29,76	34,29	33,15	10,73	14,15	
Wassergehalt $w = (m_w / m_d) [/]$	0,335	0,320	0,309	0,299	0,213	0,215	

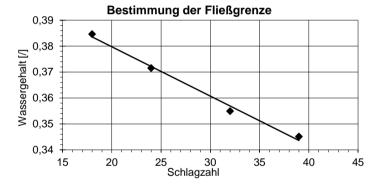


Zustandsform nach DIN EN ISO 14688-2

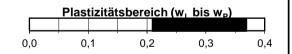
	breiig	sehr weich	weich	steif	halbfe	st/fest	
		•					
0,0	00 0,	25 0,	50 0,	75 1,	00 1,	25 1,	50

Projekt: Projekt-Nr.: Anlage:

Baugebiet Wammesfeld, Öhringen 223299 10.12

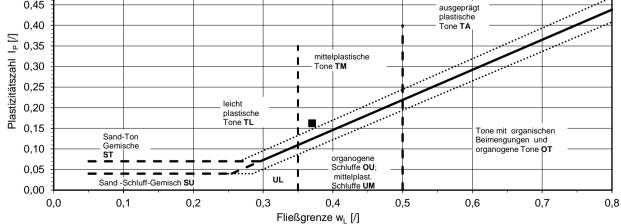


GMP Geotechnik GmbH Co. KG | Beratende Ingenieure und Geologen Hedanstraße 17 | 97084 Würzburg | Tel.: +49(931) 6144-0 | E-Mail: mail@gmp-geo.de


	Bestimmung der Zustandsgrenzen (Fließgrenze, Ausrollgrenze) nach DIN EN ISO 17892-12							
Labor-Nr.: 24/0097 Entnommen am: 14.12.2023 w _{ges} [-]:								
Entnahmestelle:	Entnahmestelle: RKS 20			w _{<0,4} [-]:	0,281			
Tiefe [m u AP]:	3,40 - 4,80	Durchgeführt am:	19.01.2024	$\ddot{U} = 1 - (w_{ges}/w_{<0,4})$ [-]:	0,000			
Entnahmeart: gestört		Durchgeführt von:	V.C					
Bodengruppe: TM Ausgewertet von: V.L								

Bemerkung:

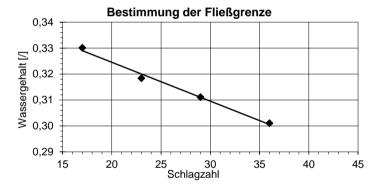
	Fließgrenze			Ausrollgrenze			
	1. Probe	2. Probe	3. Probe	4. Probe	1. Probe	2. Probe	3. Probe
Zahl der Schläge	18	24	32	39			
Feuchte Probe + Behälter m + m _b [g]	98,88	95,31	72,92	87,71	88,27	89,87	
Trock. Probe + Behälter m _d + m _b [g]	86,61	84,26	64,10	78,81	85,58	87,02	
Behälter m _b [g]	54,71	54,52	39,25	53,02	72,56	73,40	
Wasser $(m_a+mb) - (m_d + m_b) = m_w [g]$	12,27	11,05	8,82	8,90	2,69	2,85	
Trockene Probe m _d [g]	31,90	29,74	24,85	25,79	13,02	13,62	
Wassergehalt $w = (m_w / m_d) [/]$	0,385	0,372	0,355	0,345	0,207	0,209	


Wassergehalt w_{<0,4} [/]: 0,281 Fließgrenze w_L [/]: 0,370 Ausrollgrenze w_P [/]: 0,208 Plastizitätszahl $I_P = w_L - w_P$ [/]: 0,162 Konsistenzzahl $I_{C,<0,4}$ = ($W_L - W_{<0,4}$)/ I_P [/]: 0,550

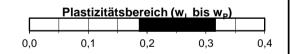
Zustandsform nach DIN EN ISO 14688-2

	breiig	sehr weich	weich	steif	halbfe	st/fest
			•			
0,0	00 0,	25 0,	50 0,	, 75 1,	00 1,	25 1,50

rojekt-Nr.: Anlage: Baugebiet Wammesfeld, Öhringen 223299 10.13

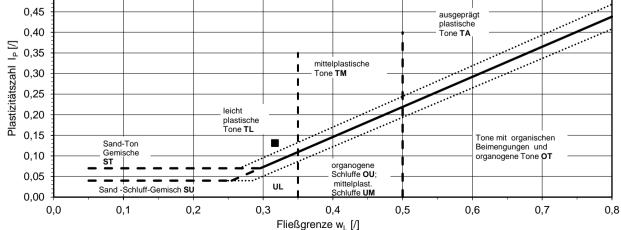


GMP Geotechnik GmbH Co. KG | Beratende Ingenieure und Geologen Hedanstraße 17 | 97084 Würzburg | Tel.: +49(931) 6144-0 | E-Mail: mail@gmp-geo.de


Bestimmung der Zustandsgrenzen (Fließgrenze, Ausrollgrenze) nach DIN EN ISO 17892-12								
Labor-Nr.:	24/0105	13.12.2023	w _{ges} [-]:	0,191				
Entnahmestelle:	RKS 23	Angeliefert am:		W _{<0,4} [-]:	0,191			
Tiefe [m u AP]:	1,00 - 1,80	Durchgeführt am:	18.01.2024	$\ddot{U} = 1 - (w_{ges}/w_{<0,4})$ [-]:	0,000			
Entnahmeart:	gestört	Durchgeführt von:	V.C					
Bodengruppe:	Bodengruppe: TL Ausgewertet von: V.L							

Bemerkung:

	Fließgrenze				Ausrollgrenze		
	1. Probe	2. Probe	3. Probe	4. Probe	1. Probe	2. Probe	3. Probe
Zahl der Schläge	17	23	29	36			
Feuchte Probe + Behälter m + m _b [g]	80,30	79,12	75,74	90,48	83,88	72,47	
Trock. Probe + Behälter m _d + m _b [g]	71,09	69,30	67,19	81,85	82,13	69,76	
Behälter m _b [g]	43,19	38,46	39,71	53,18	72,79	55,08	
Wasser $(m_a+mb) - (m_d + m_b) = m_w [g]$	9,21	9,82	8,55	8,63	1,75	2,71	
Trockene Probe m _d [g]	27,90	30,84	27,48	28,67	9,34	14,68	
Wassergehalt $w = (m_w / m_d) [/]$	0,330	0,318	0,311	0,301	0,187	0,185	


Wassergehalt $w_{<0,4}$ [/]: 0,191 Fließgrenze w_L [/]: 0,317 Ausrollgrenze w_P [/]: 0,186 Plastizitätszahl $I_P = w_L - w_P$ [/]: 0,131 Konsistenzzahl $I_{C,<0,4}$ = $(w_L - w_{<0,4})/I_P$ [/]: 0,962

Zustandsform nach DIN EN ISO 14688-2

	breiig	sehr weich	weich	steif	halbfe	st/fest	
				•			
0,0	00 0,	25 0,	50 0,	75 1,	00 1,	25 1,5	50

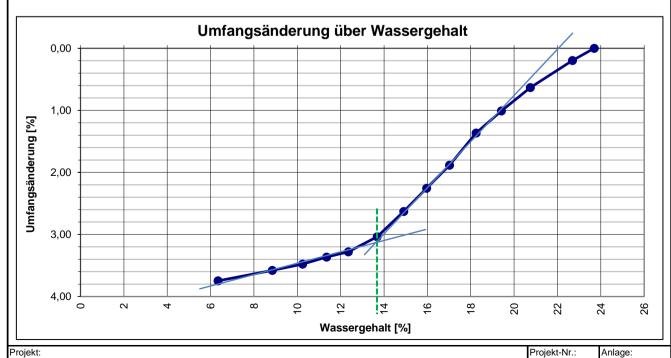
Projekt: Projekt-Nr.: Anlage:

Baugebiet Wammesfeld, Öhringen 223299 10.14.1

GMP Geotechnik GmbH & Co. KG - Beratende Ingenieure und Geologen - Hedanstraße 17 - 97084 Würzburg - Tel.: +49(931) 6144-0 - Fax +49(931) 6144-200

Bestimmung der Schrumpfgrenze

24/0105	Entnahmewassergehalt w _n	[%]:	19,1
RKS 23	Ringdurchmesser	[cm]:	7,00
gestört	Ringumfang	[cm]:	21,99
1,00 - 1,80 m	Ringhöhe	[cm]:	1,40
Schluff, tonig, sandig (q)	Probengewicht Beginn	[g]:	111,25
13.12.2023	Tara (Gerät+Unterlage)	[g]:	1041,00
Herr Oechsner	Probe+Tara	[g]:	1152,25
05.02.2024	Trockengewicht Probe	[g]:	89,94
	RKS 23 gestört 1,00 - 1,80 m Schluff, tonig, sandig (q) 13.12.2023 Herr Oechsner	RKS 23 gestört Ringumfang 1,00 - 1,80 m Ringhöhe Schluff, tonig, sandig (q) Probengewicht Beginn 13.12.2023 Tara (Gerät+Unterlage) Herr Oechsner Probe+Tara	RKS 23 Ringdurchmesser [cm]: gestört Ringumfang [cm]: 1,00 - 1,80 m Ringhöhe [cm]: Schluff, tonig, sandig (q) Probengewicht Beginn [g]: 13.12.2023 Tara (Gerät+Unterlage) [g]: Herr Oechsner Probe+Tara [g]:


Wasser- gehalt [%]	Gewichts- änderung [%]	Umfangs- änderung [%]	Zeit- differenz [h]	Bemerkung
23,69	0,00	0,00	0,00	Nullmessung
22,69	0,81	0,20	1,25	
20,75	2,38	0,63	3,00	
19,41	3,46	1,01	4,50	
18,25	4,40	1,36	6,00	
17,02	5,39	1,88	7,50	
15,97	6,25	2,26	9,00	
14,91	7,10	2,63	10,50	
13,69	8,09	3,04	12,00	Schrumpfgrenze
12,35	9,17	3,28	13,50	
11,35	9,98	3,36	14,75	
10,24	10,88	3,48	16,25	
8,85	12,00	3,58	18,25	
6,35	14,02	3,75	21,75	Nach Ofentrocknung

Wassergehalt an der Schrumpfgrenze ws:

13,69

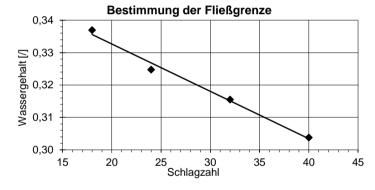
Restschrumpfmaß S: (Volumenbezogen)

8 [%]

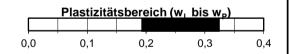
Baugebiet Wammesfeld, Öhringen

Projekt-Nr.: **223299**

10.14.2

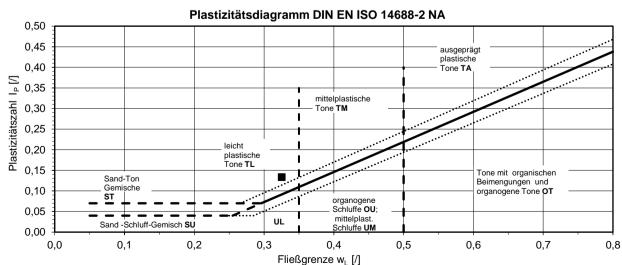


GMP Geotechnik GmbH Co. KG | Beratende Ingenieure und Geologen Hedanstraße 17 | 97084 Würzburg | Tel.: +49(931) 6144-0 | E-Mail: mail@gmp-geo.de


	Bestimmung der Zustandsgrenzen (Fließgrenze, Ausrollgrenze) nach DIN EN ISO 17892-12							
Labor-Nr.:	24/0111	Entnommen am:	13.12.2023	w _{ges} [-]:	0,247			
Entnahmestelle:	RKS 24	Angeliefert am:		w _{<0,4} [-]:	0,247			
Tiefe [m u AP]:	0,50 - 2,00	Durchgeführt am:	18.01.2024	$\ddot{U} = 1 - (w_{ges}/w_{<0,4})$ [-]:	0,000			
Entnahmeart:	gestört	Durchgeführt von:	V.L					
Bodengruppe:	Bodengruppe: TL Ausgewertet von: V.L							

Bemerkung:

	Fließgrenze				Ausrollgrenze		
	1. Probe	2. Probe	3. Probe	4. Probe	1. Probe	2. Probe	3. Probe
Zahl der Schläge	18	24	32	40			
Feuchte Probe + Behälter m + m _b [g]	103,79	89,97	103,53	86,89	84,43	84,29	
Trock. Probe + Behälter m _d + m _b [g]	91,42	78,01	90,69	75,79	82,53	82,36	
Behälter m _b [g]	54,71	41,18	49,99	39,25	72,59	72,35	
Wasser $(m_a+mb) - (m_d + m_b) = m_w [g]$	12,37	11,96	12,84	11,10	1,90	1,93	
Trockene Probe m _d [g]	36,71	36,83	40,70	36,54	9,94	10,01	
Wassergehalt $w = (m_w / m_d) [/]$	0,337	0,325	0,315	0,304	0,191	0,193	·



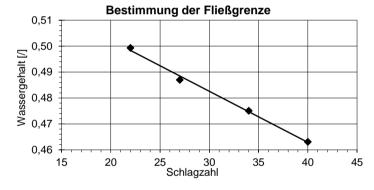
 $\label{eq:wassergehalt} \begin{array}{ll} Wassergehalt \ w_{<0,4} \ \ [\prime]: & 0,247 \\ Fließgrenze \ w_L \ [\prime]: & 0,325 \\ Ausrollgrenze \ w_P \ [\prime]: & 0,192 \\ Plastizitätszahl \ I_P = \ w_L - \ w_P \ [\prime]: & 0,133 \\ Konsistenzzahl \ I_{C,<0,4} = \ (w_L - \ w_{<0,4}) / I_P \ \ [\prime]: & 0,587 \\ \end{array}$

Zustandsform nach DIN EN ISO 14688-2

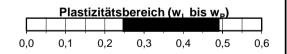
	breiig	sehr weich	weich	steif	halbfe	st/fest	
			•				
0,0	00 0,	25 0,	50 0,	75 1,	00 1,	25 1,5	50

Projekt: Projekt-Nr.: Anlage:

Baugebiet Wammesfeld, Öhringen 223299 10.15

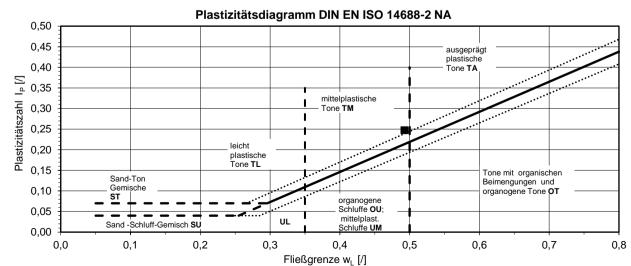


GMP Geotechnik GmbH Co. KG | Beratende Ingenieure und Geologen Hedanstraße 17 | 97084 Würzburg | Tel.: +49(931) 6144-0 | E-Mail: mail@gmp-geo.de


	Bestimmung der Zustandsgrenzen (Fließgrenze, Ausrollgrenze) nach DIN EN ISO 17892-12							
Labor-Nr.:	24/0263	25.01.2024	w _{ges} [-]:	0,264				
Entnahmestelle:	RKS 1	Angeliefert am:		w _{<0,4} [-]:	0,264			
Tiefe [m u AP]:	3,80 - 7,00	Durchgeführt am:	09.02.2024	$\ddot{U} = 1 - (w_{ges}/w_{<0,4})$ [-]:	0,000			
Entnahmeart:	gestört	Durchgeführt von:	A.S					
Bodengruppe:	Bodengruppe: TM Ausgewertet von: Oe							

Bemerkung:

	Fließgrenze				Ausrollgrenze		
	1. Probe	2. Probe	3. Probe	4. Probe	1. Probe	2. Probe	3. Probe
Zahl der Schläge	22	27	34	40			
Feuchte Probe + Behälter m + m _b [g]	83,27	96,35	80,06	91,20	70,12	71,20	
Trock. Probe + Behälter m _d + m _b [g]	68,81	81,95	67,10	78,16	66,79	67,55	
Behälter m _b [g]	39,85	52,38	39,82	50,00	53,16	52,71	
Wasser $(m_a+mb) - (m_d + m_b) = m_w [g]$	14,46	14,40	12,96	13,04	3,33	3,65	
Trockene Probe m _d [g]	28,96	29,57	27,28	28,16	13,63	14,84	
Wassergehalt $w = (m_w / m_d) [/]$	0,499	0,487	0,475	0,463	0,244	0,246	·

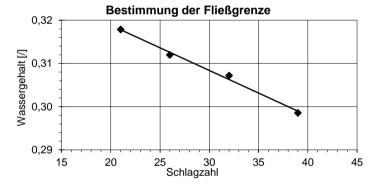


Wassergehalt $w_{<0,4}$ [/]: 0,264 Fließgrenze w_L [/]: 0,492 Ausrollgrenze w_P [/]: 0,245 Plastizitätszahl $I_P = w_L - w_P$ [/]: 0,247 Konsistenzzahl $I_{C,<0,4} = (w_L - w_{<0,4})/I_P$ [/]: 0,924

Zustandsform nach DIN EN ISO 14688-2

	breiig	sehr weich	weich	steif	halbfe	st/fest	
				•			
0,0	00 0,	25 0,	50 0,	75 1,	00 1,	25 1,5	50

Projekt: Projekt-Nr.: Anlage:
Baugebiet Wammesfeld, Öhringen 223299 10.16

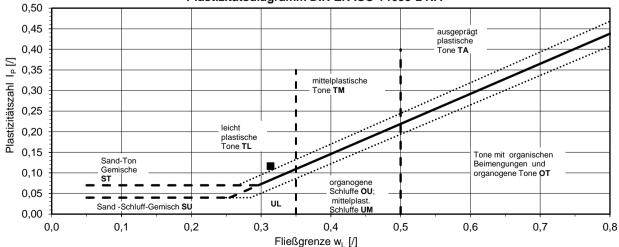


GMP Geotechnik GmbH Co. KG | Beratende Ingenieure und Geologen Hedanstraße 17 | 97084 Würzburg | Tel.: +49(931) 6144-0 | E-Mail: mail@gmp-geo.de


	Bestimmung der Zustandsgrenzen (Fließgrenze, Ausrollgrenze) nach DIN EN ISO 17892-12							
Labor-Nr.:	Labor-Nr.: 24/268 Entnommen am: 26.01.2024 w _{ges} [-]: 0,24							
Entnahmestelle:	RKS 21	Angeliefert am:		W _{<0,4} [-]:	0,246			
Tiefe [m u AP]:	2,10 - 7,00	Durchgeführt am:	09.02.2024	$\ddot{U} = 1 - (w_{ges}/w_{<0,4})$ [-]:	0,000			
Entnahmeart:	gestört	Durchgeführt von:	Szy					
Bodengruppe:	Bodengruppe: TL Ausgewertet von: Oe							

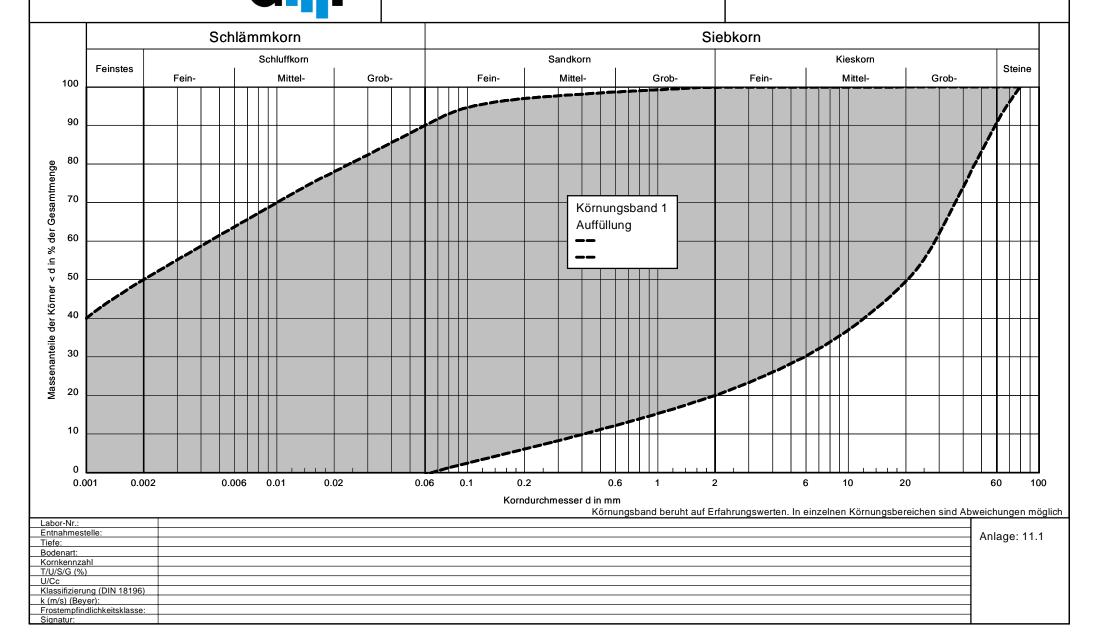
Bemerkung:

		Fließgrenze				Ausrollgrenze		
-	1. Probe	2. Probe	3. Probe	4. Probe	1. Probe	2. Probe	3. Probe	
Zahl der Schläge	21	26	32	39				
Feuchte Probe + Behälter m + m _b [g]	116,02	116,20	118,45	106,72	58,25	62,54		
Trock. Probe + Behälter m _d + m _b [g]	100,74	101,21	100,31	91,78	55,42	59,36		
Behälter m _b [g]	52,67	53,16	41,26	41,74	40,95	43,33		
Wasser $(m_a+mb) - (m_d + m_b) = m_w [g]$	15,28	14,99	18,14	14,94	2,83	3,18		
Trockene Probe m _d [g]	48,07	48,05	59,05	50,04	14,47	16,03		
Wassergehalt $w = (m_w / m_d) [/]$	0,318	0,312	0,307	0,299	0,196	0,198		


Wassergehalt w_{<0,4} [/]: 0,246 Fließgrenze w_L [/]: 0,314 Ausrollgrenze w_P [/]: 0,197 Plastizitätszahl $I_P = w_L - w_P$ [/]: 0,117 Konsistenzzahl $I_{C,<0,4}$ = ($W_L - W_{<0,4}$)/ I_P [/]: 0,580

Zustandsform nach DIN EN ISO 14688-2

	breiig	sehr weich	weich	steif	halbfe	st/fest	
			•				
0,0	00 0,	25 0,	50 0,	75 1,	00 1,	25 1,50	0

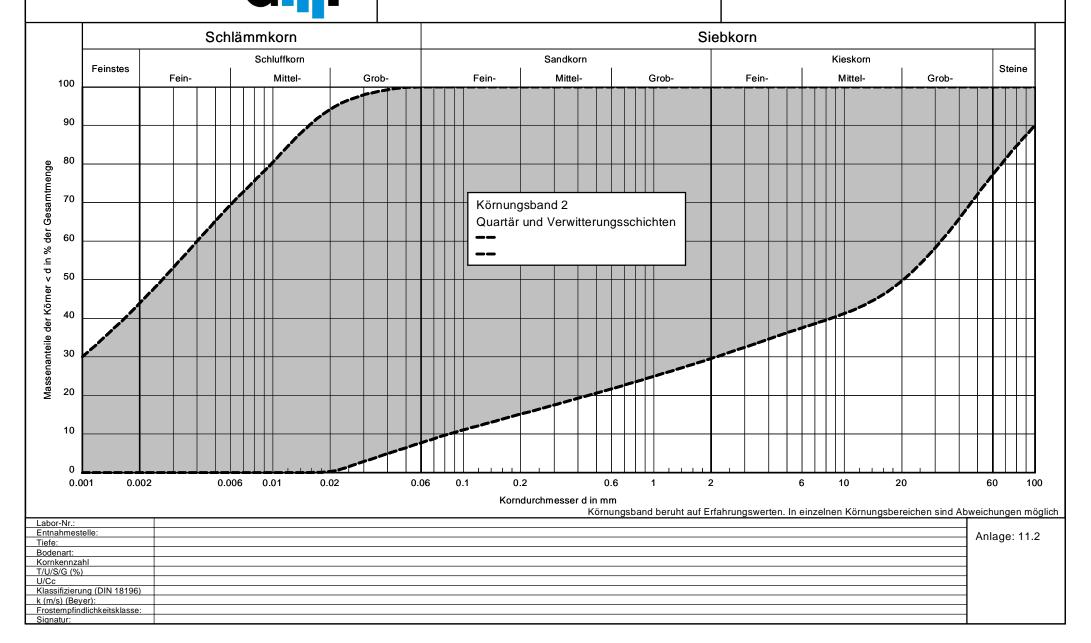

rojekt-Nr.: Anlage: Baugebiet Wammesfeld, Öhringen 223299 10.17 GMP Geotechnik GmbH & Co.KG

Beratende Ingenieure und Geologen Hedanstraße 17, 97084 Würzburg Tel. 0931/6144-0, Fax 0931/6144-200

Körnungslinie nach DIN EN ISO 17892-4

Projekt: Baugebiet Wammesfeld, Öhringen

Projekt-Nr.: 223299


GMP Geotechnik GmbH & Co.KG

Beratende Ingenieure und Geologen Hedanstraße 17, 97084 Würzburg Tel. 0931/6144-0, Fax 0931/6144-200

Körnungslinie nach DIN EN ISO 17892-4

Projekt: Baugebiet Wammesfeld, Öhringen

Projekt-Nr.: 223299

Anhang

Prüfbericht Chemisches Labor Dr. Graser, Schonungen

2345954

CLG Chemisches Labor Dr. Graser KG • Goldellern 5 • 97453 Schonungen

GMP - Geotechnik GmbH & Co. KG Beratende Ingenieure und Geologen Hedanstraße 17 97084 Würzburg

CLG Chemisches Labor Dr. Graser KG Goldellern 5 97453 Schonungen

Telefon: 09721 / 7576-0 Telefax: 09721 / 7576-50 E-Mail: clg@labor-graser.de

Schonungen, 17.01.2024

Prüfbericht 2345954

Untersuchung nach DIN 4030 zur Beurteilung der Betonaggressivität

Projekt 223299 - Baugebiet Wammesfeld, Öhringen - Bauchemische

Wasseranalyse

Probenbezeichnung RKS 23, Entnahmetiefe: 2,40 m

Datum der Probenahme 13.12.2023

Probenehmer Auftraggeber

Zustellform Anlieferung durch CLG

Probeneingang 18.12.2023

Eingangsnummer 2345954

Untersuchungszeitraum 18.12.2023 - 17.01.2024

Seite 1 von 3

Akkreditiertes Prüflaboratorium

Laborbefund

Parameter	Einheit	Ergebnis	Grenzwert (XA1)	Grenzwert (XA2)	Grenzwert (XA3)
Färbung (visuell)	-	braun	(****)	()	(* 2 10)
Trübung (visuell)		stark getrübt			
Geruch	-	erdig			
Geruch (angesäuerte Probe)	-	ohne Befund			
pH-Wert (Labor)		7,10	5,5 - 6,5	4,5 - 5,5	< 4,5
Elektrische					
Leitfähigkeit, 25°C (Labor)	μS/cm	2000			
Temperatur bei KB8,2-Messung	°C	8,90			
Temperatur bei KS4,3-Messung	°C	10,0			
Temperatur bei KS4,3-Messung	°C	10,0			
Chlorid (CI)	mg/l	358			
Nitrat (NO3)	mg/l	41,6			
Sulfat (SO4)	mg/l	80,3	200 - 600	600 - 3000	> 3000
Sulfid, leicht freisetzbar (S)	mg/l	< 0,02			
Ammonium (NH4)	mg/l	< 0,035	15 - 30	30 - 60	> 60
Gesamthärte (=Summe Erdalkalien)	°dH	46,0			
Kaliumpermanganatver brauch (KMnO4)	mg/l	5,7			
Säurekapazität bis pH 4,3 (KS4,3)	mmol/l	7,66			
Basekapazität bis pH 8,2 (KB8,2)	mmol/l	2,6			
Natrium (Na)	mg/l	120			
Kalium (K)	mg/l	1,5			
Magnesium (Mg)	mg/l	39,3	300 - 1000	1000 - 3000	> 3000
Calcium (Ca)	mg/l	232			
Härtehydrogencarbonat (CaO)	mg/l	467			
Kalklösende Kohlensäure (CO2)	mg/l	-15	15 - 40	40 - 100	> 100

Für die Beurteilung ist der höchste Angriffsgrad maßgebend, auch wenn er nur von einem der Werte erreicht wird. Liegen zwei oder mehrere Werte im oberen Viertel eines Bereiches (bei pH im unteren Viertel), so erhöht sich der Angriffsgrad um eine Stufe (ausgenommen Meerwasser und Niederschlagswasser).

Methoden

Parameter	Methode	Standort
Härtehydrogencarbonat (CaO), Kalklösende Kohlensäure	berechnet	
(CO2)	berechnet	
Temperatur bei KB8,2-Messung, Temperatur bei	DIN 38404-4: 1976-12	т
KS4,3-Messung	DIN 30404-4. 1970-12	'
Sulfid, leicht freisetzbar (S)	DIN 38405-27: 1992-07	Т
Gesamthärte (=Summe Erdalkalien)	DIN 38406-3: 2002-03	Т
Basekapazität bis pH 8,2 (KB8,2), Säurekapazität bis pH 4,3	DIN 38409-7: 2005-12	т
(KS4,3)	DIN 30409-7. 2003-12	1
Elektrische Leitfähigkeit, 25°C (Labor)	DIN EN 27888 (C8): 1993-11	T/G
Chlorid (CI), Nitrat (NO3), Sulfat (SO4)	DIN EN ISO 10304-1 (D20): 2009-07	Т
pH-Wert (Labor)	DIN EN ISO 10523 (C5): 2012-04	Т
Calcium (Ca), Kalium (K), Magnesium (Mg), Natrium (Na)	DIN EN ISO 11885 (E22): 2009-09	G
Kaliumpermanganatverbrauch (KMnO4)	DIN EN ISO 8467 (H5): 1995-05	Т
Ammonium (NH4)	DIN ISO 15923-1 (D 49): 2014-07	Т
Geruch, Geruch (angesäuerte Probe)	organoleptische Bestimmung	T/G
Färbung (visuell), Trübung (visuell)	visuelle Bestimmung	

G = Durchgeführt am Standort Goldellern 5

Beurteilung:

Nach DIN 4030 ist das Wasser nicht betonaggressiv

Dr. B. Graser, Dipl.-Chem., (Laborleitung)

Die Prüfergebnisse beziehen sich ausschließlich auf die Prüfgegenstände. Die auszugsweise Vervielfältigung oder Abänderung des Berichts ist ohne unsere schriftliche Genehmigung nicht zulässig. Wenn nicht anders vereinbart -und soweit sinnvoll- werden die Proben in einem 1 Liter Gebinde für 2 Monate (gerechnet ab Probeneingang) im Labor aufbewahrt.

T = Durchgeführt am Standort Tiefer Graben 2

Anhang

Prüfberichte AGROLAB Labor GmbH, Bruckberg

3527919 - 387196

3527919 - 387202

3527919 - 387203

3527924 - 387221

3527924 - 387224

3527924 - 387225

3527924 - 387226

3527924 - 387227

3527924 - 387228

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

AGROLAB Labor GmbH, Dr-Pauling-Str.3, 84079 Bruckberg

GMP GEOTECHNIK GMBH & CO. KG Hedanstr. 17 97084 WÜRZBURG

> Datum 15.03.2024 Kundennr. 27018091

> > Methode

PRÜFBERICHT

Auftrag 3527919 223299 Öhringen BG Wammesfeld Analysennr. 387196 Mineralisch/Anorganisches Material

Probeneingang **08.03.2024**Probenahme **keine Angabe**

Probenehmer Auftraggeber (Steigerwald)
Kunden-Probenbezeichnung SD RKS 1 / 0,0 - 0,24 m

Einheit

Feststoff Analyse in der Gesamtfraktion DIN 19747: 2009-07 DIN 19747 : 2009-07 DIN EN 14346 : 2007-03, Verfahren Backenbrecher Trockensubstanz % 99,6 0,1 <0,05 0,05 DIN ISO 18287: 2006-05 Naphthalin mg/kg Acenaphthylen mg/kg <0,05 0,05 DIN ISO 18287: 2006-05 Acenaphthen <0,05 0,05 DIN ISO 18287: 2006-05 mg/kg Fluoren mg/kg <0,05 0,05 DIN ISO 18287: 2006-05 Phenanthren mg/kg 0,08 0,05 DIN ISO 18287: 2006-05 DIN ISO 18287 : 2006-05 Anthracen <0,05 0,05 mg/kg DIN ISO 18287 : 2006-05 Fluoranthen mg/kg 0,10 0,05 DIN ISO 18287 : 2006-05 Pyren 0,10 mg/kg 0,05 DIN ISO 18287 : 2006-05 Benzo(a)anthracen mg/kg <0,05 0,05 Chrysen 0,10 0,05 DIN ISO 18287: 2006-05 mg/kg Benzo(b)fluoranthen mg/kg 0,08 0,05 DIN ISO 18287: 2006-05 Benzo(k)fluoranthen mg/kg <0,05 0,05 DIN ISO 18287: 2006-05 DIN ISO 18287: 2006-05 Benzo(a)pyren mg/kg 0,05 0,05 DIN ISO 18287: 2006-05 Dibenz(ah)anthracen mg/kg <0,05 0,05 DIN ISO 18287: 2006-05 Benzo(ghi)perylen mg/kg 0,09 0,05 0,05 Indeno(1,2,3-cd)pyren <0,05 DIN ISO 18287: 2006-05 mg/kg Berechnung aus Messwerten der PAK-Summe (nach EPA) 0.60^{x} mg/kg Einzelparameter

Ergebnis

Best.-Gr.

Eluat

mit dem

nicht

17025:2018 akkreditiert.

Ш

5	Eluaterstellung					DIN 38414-4 : 1984-10
2	Temperatur Eluat	°C	20,2		0	DIN 38404-4 : 1976-12
5	pH-Wert		10,1		0	DIN 38404-5 : 2009-07
5	elektrische Leitfähigkeit	μS/cm	70	1	10	DIN EN 27888 : 1993-11
>	Phenolindex	mg/l	<0,01	0,	,01	DIN EN ISO 14402 : 1999-12 (H
=		_				37) Verfahren nach Abschnitt 4

Seite 1 von 2

DAKKS

Deutsche
Akkreditierungsstelle
D-PL-14289-01-00

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

Datum 15.03.2024 Kundennr. 27018091

PRÜFBERICHT

3527919 223299 Öhringen BG Wammesfeld Auftrag Analysennr. 387196 Mineralisch/Anorganisches Material

Kunden-Probenbezeichnung

SD RKS 1 / 0,0 - 0,24 m x) Einzelwerte, die die Nachweis- oder Bestimmungsgrenze unterschreiten, wurden nicht berücksichtigt

Erläuterung: Das Zeichen "<" oder n.b. in der Spalte Ergebnis bedeutet, der betreffende Parameter ist bei nebenstehender Bestimmungsgrenze nicht quantifizierbar.

Die parameterspezifischen analytischen Messunsicherheiten sowie Informationen zum Berechnungsverfahren sind auf Anfrage verfügbar, sofern die berichteten Ergebnisse oberhalb der parameterspezifischen Bestimmungsgrenze liegen. Die Mindestleistungskriterien der angewandten Verfahren beruhen bezüglich der Messunsicherheit in der Regel auf der Richtlinie 2009/90/EG der Europäischen Kommission.

Die Analysenwerte der Feststoffparameter beziehen sich auf die Trockensubstanz, bei den mit ° gekennzeichneten Parametern auf die Originalsubstanz.

Beginn der Prüfungen: 08.03.2024 Ende der Prüfungen: 13.03.2024

Die Ergebnisse beziehen sich ausschließlich auf die geprüften Gegenstände. In Fällen, wo das Prüflabor nicht für die Probenahme verantwortlich war, gelten die berichteten Ergebnisse für die Proben wie erhalten. Das Laboratorium ist nicht für die vom Kunden bereitgestellten Informationen verantwortlich. Die ggf. im vorliegenden Prüfbericht dargestellten Kundeninformationen unterliegen nicht der Akkreditierung des Laboratoriums und können sich auf die Validität der Prüfergebnisse auswirken. Die auszugsweise Vervielfältigung des Berichts ohne unsere schriftliche Genehmigung ist nicht zulässig. Die Ergebnisse in diesem Prüfbericht werden gemäß der mit Ihnen schriftlich gemäß. Auftragsbestätigung getroffenen Vereinbarung in vereinfachter Weise i.S. der DIN EN ISO/IEC 17025:2018, Abs. 7.8.1.3 berichtet.

AGROLAB Labor GmbH, Sebastian Waldinger, Tel. 08765/93996-700 serviceteam4.bruckberg@agrolab.de Kundenbetreuung

Dieser elektronisch übermittelte Ergebnisbericht wurde geprüft und freigegeben. Er entspricht den Anforderungen der EN ISO/IEC 17025:2017 an vereinfachte Ergebnisberichte und ist ohne Unterschrift

mit dem

Verfahren sind

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

AGROLAB Labor GmbH, Dr-Pauling-Str.3, 84079 Bruckberg

GMP GEOTECHNIK GMBH & CO. KG Hedanstr. 17 97084 WÜRZBURG

> Datum 15.03.2024 Kundennr. 27018091

PRÜFBERICHT

Auftrag 3527919 223299 Öhringen BG Wammesfeld Analysennr. 387202 Mineralisch/Anorganisches Material

Probeneingang 08.03.2024 Probenahme keine Angabe

Probenehmer **Auftraggeber (Steigerwald)** Kunden-Probenbezeichnung SD RKS 21 / 0,0 - 0,21 m

	Einheit	Ergebnis	BestGr.	Methode
Feststoff				
Analysis in der Cocomtfraktion				DIN 10

Analyse in der Gesamtfraktion				DIN 19747 : 2009-07
Backenbrecher		۰		DIN 19747 : 2009-07
Trockensubstanz	%	° 99,7	0,1	DIN EN 14346 : 2007-03, Verfahren
Naphthalin	mg/kg	<0,05	0.05	DIN ISO 18287 : 2006-05
Acenaphthylen	mg/kg	<0,05	0.05	DIN ISO 18287 : 2006-05
Acenaphthen	mg/kg	<0,05	0.05	DIN ISO 18287 : 2006-05
Fluoren	mg/kg	<0.05	0,05	DIN ISO 18287 : 2006-05
Phenanthren	mg/kg	0,20	0,05	DIN ISO 18287 : 2006-05
Anthracen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Fluoranthen	mg/kg	0,29	0,05	DIN ISO 18287 : 2006-05
Pyren	mg/kg	0,22	0,05	DIN ISO 18287 : 2006-05
Benzo(a)anthracen	mg/kg	<0,10 ^{m)}	0,1	DIN ISO 18287 : 2006-05
Chrysen	mg/kg	0,15	0,05	DIN ISO 18287 : 2006-05
Benzo(b)fluoranthen	mg/kg	0,19	0,05	DIN ISO 18287 : 2006-05
Benzo(k)fluoranthen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Benzo(a)pyren	mg/kg	0,10	0,05	DIN ISO 18287 : 2006-05
Dibenz(ah)anthracen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Benzo(ghi)perylen	mg/kg	0,10	0,05	DIN ISO 18287 : 2006-05
Indeno(1,2,3-cd)pyren	mg/kg	0,06	0,05	DIN ISO 18287 : 2006-05
PAK-Summe (nach EPA)	mg/kg	1,3 ^{x)}		Berechnung aus Messwerten der

Eluat

5	Eluaterstellung				DIN 38414-4 : 1984-10
2	Temperatur Eluat	°C	20,1	0	DIN 38404-4 : 1976-12
5	pH-Wert		9,8	0	DIN 38404-5 : 2009-07
5	elektrische Leitfähigkeit	μS/cm	51	10	DIN EN 27888 : 1993-11
>	Phenolindex	mg/l	<0,01	0,01	DIN EN ISO 14402 : 1999-12 (H
=		-			37) Verfahren nach Abschnitt 4

Seite 1 von 2 Deutsche Akkreditierungsstelle D-PL-14289-01-00

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

Datum 15.03.2024 Kundennr. 27018091

PRÜFBERICHT

gekennzeichnet

Symbol

mit dem

Verfahren sind

nicht

Die in diesem Dokument berichteten Verfahren sind gemäß DIN EN ISO/IEC 17025:2018 akkreditiert. Ausschließlich

Auftrag 3527919 223299 Öhringen BG Wammesfeld Analysennr. 387202 Mineralisch/Anorganisches Material SD RKS 21 / 0,0 - 0,21 m

x) Einzelwerte, die die Nachweis- oder Bestimmungsgrenze unterschreiten, wurden nicht berücksichtigt.

m) Die Nachweis-, bzw. Bestimmungsgrenze musste erhöht werden, da Matrixeffekte bzw. Substanzüberlagerungen eine Quantifizierung erschweren.

Erläuterung: Das Zeichen "<" oder n.b. in der Spalte Ergebnis bedeutet, der betreffende Parameter ist bei nebenstehender Bestimmungsgrenze nicht quantifizierbar.

Die parameterspezifischen analytischen Messunsicherheiten sowie Informationen zum Berechnungsverfahren sind auf Anfrage verfügbar, sofern die berichteten Ergebnisse oberhalb der parameterspezifischen Bestimmungsgrenze liegen. Die Mindestleistungskriterien der angewandten Verfahren beruhen bezüglich der Messunsicherheit in der Regel auf der Richtlinie 2009/90/EG der Europäischen Kommission.

Die Analysenwerte der Feststoffparameter beziehen sich auf die Trockensubstanz, bei den mit ° gekennzeichneten Parametern auf die Originalsubstanz.

Beginn der Prüfungen: 08.03.2024 Ende der Prüfungen: 14.03.2024

Die Ergebnisse beziehen sich ausschließlich auf die geprüften Gegenstände. In Fällen, wo das Prüflabor nicht für die Probenahme verantwortlich war, gelten die berichteten Ergebnisse für die Proben wie erhalten. Das Laboratorium ist nicht für die vom Kunden bereitgestellten Informationen verantwortlich. Die ggf. im vorliegenden Prüfbericht dargestellten Kundeninformationen unterliegen nicht der Akkreditierung des Laboratoriums und können sich auf die Validität der Prüfergebnisse auswirken. Die auszugsweise Vervielfältigung des Berichts ohne unsere schriftliche Genehmigung ist nicht zulässig. Die Ergebnisse in diesem Prüfbericht werden gemäß der mit Ihnen schriftlich gemäß Auftragsbestätigung getroffenen Vereinbarung in vereinfachter Weise i.S. der DIN EN ISO/IEC 17025:2018, Abs. 7.8.1.3 berichtet.

AGROLAB Labor GmbH, Sebastian Waldinger, Tel. 08765/93996-700 serviceteam4.bruckberg@agrolab.de Kundenbetreuung

Dieser elektronisch übermittelte Ergebnisbericht wurde geprüft und freigegeben. Er entspricht den Anforderungen der EN ISO/IEC 17025:2017 an vereinfachte Ergebnisberichte und ist ohne Unterschrift gültig.

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

AGROLAB Labor GmbH, Dr-Pauling-Str.3, 84079 Bruckberg

GMP GEOTECHNIK GMBH & CO. KG Hedanstr. 17 97084 WÜRZBURG

> Datum 15.03.2024 Kundennr. 27018091

> > Methode

PRÜFBERICHT

Auftrag 3527919 223299 Öhringen BG Wammesfeld Analysennr. 387203 Mineralisch/Anorganisches Material

Probeneingang **08.03.2024**Probenahme **keine Angabe**

Probenehmer Auftraggeber (Steigerwald)

Einheit

Kunden-Probenbezeichnung RKS 23 / 0,5 - 0,6 m

Feststoff				
Analyse in der Gesamtfraktion				DIN 19747 : 2009-07
Trockensubstanz	%	95,3	0,1	DIN EN 14346 : 2007-03, Verfahren A
Naphthalin	mg/kg	<50 hb)	50	DIN ISO 18287 : 2006-05
Acenaphthylen	mg/kg	<50 hb)	50	DIN ISO 18287 : 2006-05
Acenaphthen	mg/kg	66 hb)	50	DIN ISO 18287 : 2006-05
Fluoren	mg/kg	110 hb)	50	DIN ISO 18287 : 2006-05
Phenanthren	mg/kg	610 hb)	50	DIN ISO 18287 : 2006-05
Anthracen	mg/kg	270 hb)	50	DIN ISO 18287 : 2006-05
Fluoranthen	mg/kg	660 hb)	50	DIN ISO 18287 : 2006-05
Pyren	mg/kg	430 hb)	50	DIN ISO 18287 : 2006-05
Benzo(a)anthracen	mg/kg	210 hb)	50	DIN ISO 18287 : 2006-05
Chrysen	mg/kg	220 hb)	50	DIN ISO 18287 : 2006-05
Benzo(b)fluoranthen	mg/kg	130 hb)	50	DIN ISO 18287 : 2006-05
Benzo(k)fluoranthen	mg/kg	93 hb)	50	DIN ISO 18287 : 2006-05
Benzo(a)pyren	mg/kg	85 hb)	50	DIN ISO 18287 : 2006-05
Dibenz(ah)anthracen	mg/kg	<50 hb)	50	DIN ISO 18287 : 2006-05
Benzo(ghi)perylen	mg/kg	<50 hb)	50	DIN ISO 18287 : 2006-05
Indeno(1,2,3-cd)pyren	mg/kg	<50 hb)	50	DIN ISO 18287 : 2006-05
PAK-Summe (nach EPA)	mg/kg	2900 x)		Berechnung aus Messwerten der Einzelparameter

Ergebnis

Best.-Gr.

Eluat

2	Eluaterstellung				DIN 38414-4 : 1984-10
ne n	Temperatur Eluat	°C	19,5	0	DIN 38404-4 : 1976-12
2	pH-Wert		8,0	0	DIN 38404-5 : 2009-07
2	elektrische Leitfähigkeit	μS/cm	94	10	DIN EN 27888 : 1993-11
<u> </u>	Phenolindex	mg/l	<0,01	0,01	DIN EN ISO 14402 : 1999-12 (H
D D		l			37) Verfahren nach Abschnitt 4

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

Datum 15.03.2024 Kundennr. 27018091

PRÜFBERICHT

3527919 223299 Öhringen BG Wammesfeld Auftrag 387203 Mineralisch/Anorganisches Material Analysennr.

Kunden-Probenbezeichnung RKS 23 / 0,5 - 0,6 m

x) Einzelwerte, die die Nachweis- oder Bestimmungsgrenze unterschreiten, wurden nicht berücksichtigt.
hb) Die Nachweis-/Bestimmungsgrenze musste erhöht werden, da eine hohe Belastung einzelner Analyten eine Vermessung in der für die angegebenen Grenzen notwendigen unverdünnten Analyse nicht erlaubte.

Erläuterung: Das Zeichen "<" oder n.b. in der Spalte Ergebnis bedeutet, der betreffende Parameter ist bei nebenstehender Bestimmungsgrenze nicht quantifizierbar.

Die parameterspezifischen analytischen Messunsicherheiten sowie Informationen zum Berechnungsverfahren sind auf Anfrage verfügbar, sofern die berichteten Ergebnisse oberhalb der parameterspezifischen Bestimmungsgrenze liegen. Die Mindestleistungskriterien der angewandten Verfahren beruhen bezüglich der Messunsicherheit in der Regel auf der Richtlinie 2009/90/EG der Europäischen Kommission.

Die Analysenwerte der Feststoffparameter beziehen sich auf die Trockensubstanz, bei den mit ° gekennzeichneten Parametern auf die Original substanz.

Beginn der Prüfungen: 08.03.2024 Ende der Prüfungen: 14.03.2024

Die Ergebnisse beziehen sich ausschließlich auf die geprüften Gegenstände. In Fällen, wo das Prüflabor nicht für die Probenahme verantwortlich war, gelten die berichteten Ergebnisse für die Proben wie erhalten. Das Laboratorium ist nicht für die vom Kunden bereitgestellten Informationen verantwortlich. Die ggf. im vorliegenden Prüfbericht dargestellten Kundeninformationen unterliegen nicht der Akkreditierung des Laboratoriums und können sich auf die Validität der Prüfergebnisse auswirken. Die auszugsweise Vervielfältigung des Berichts ohne unsere schriftliche Genehmigung ist nicht zulässig. Die Ergebnisse in diesem Prüfbericht werden gemäß der mit Ihnen schriftlich gemäß Auftragsbestätigung getroffenen Vereinbarung in vereinfachter Weise i.S. der DIN EN ISO/IEC 17025:2018, Abs. 7.8.1.3 berichtet.

AGROLAB Labor GmbH, Sebastian Waldinger, Tel. 08765/93996-700 serviceteam4.bruckberg@agrolab.de Kundenbetreuung

Dieser elektronisch übermittelte Ergebnisbericht wurde geprüft und freigegeben. Er entspricht den Anforderungen der EN ISO/IEC 17025:2017 an vereinfachte Ergebnisberichte und ist ohne Unterschrift gültig.

Seite 2 von 2

gekennzeichnet

Symbol

mit dem

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

AGROLAB Labor GmbH, Dr-Pauling-Str.3, 84079 Bruckberg

GMP GEOTECHNIK GMBH & CO. KG Hedanstr. 17 97084 WÜRZBURG

> Datum 26.03.2024 Kundennr. 27018091

PRÜFBERICHT

3527924 223299 Öhringen BG Wammesfeld

387221 Bodenmaterial/Baggergut

Auftrag
Analysennr.
Probeneingar
Probenahme Probeneingang 08.03.2024 keine Angabe

Auftraggeber (Steigerwald) Probenehmer Kunden-Probenbezeichnung MP 1 RKS 2-4+5 / 0,2 - 3,0 m

Ergebnis Einheit Best.-Gr. Methode off

it dem Symbol

Analyse in der Fraktion < 2mm				DIN 19747 : 2009-07
Fraktion < 2 mm (Wägung)	%	48,7	0,1	DIN 19747 : 2009-07
Masse Laborprobe	kg	° 3,00	0,001	DIN 19747 : 2009-07
Trockensubstanz	%	° 79,9	0,1	DIN EN 15934 : 2012-11
Wassergehalt	%	° 20,1		Berechnung aus dem Messwert
Kohlenstoff(C) organisch (TOC)	%	0,66	0,1	DIN EN 15936 : 2012-11
EOX	mg/kg	<0,30	0,3	DIN 38414-17 : 2017-01
Königswasseraufschluß				DIN EN 13657 : 2003-01
Arsen (As)	mg/kg	10	0,8	DIN EN 16171 : 2017-01
Blei (Pb)	mg/kg	19	2	DIN EN 16171 : 2017-01
Cadmium (Cd)	mg/kg	0,14	0,13	DIN EN 16171 : 2017-01
Chrom (Cr)	mg/kg	38	1	DIN EN 16171 : 2017-01
Kupfer (Cu)	mg/kg	15	1	DIN EN 16171 : 2017-01
Nickel (Ni)	mg/kg	31	1	DIN EN 16171 : 2017-01
Quecksilber (Hg)	mg/kg	<0,05	0,05	DIN EN ISO 12846 : 2012-08
Thallium (TI)	mg/kg	0,2	0,1	DIN EN 16171 : 2017-01
Zink (Zn)	mg/kg	48	6	DIN EN 16171 : 2017-01
Kohlenwasserstoffe C10-C22 (GC)	mg/kg	<50	50	DIN EN 14039 : 2005-01 + LAGA KW/04 : 2019-09
Kohlenwasserstoffe C10-C40	mg/kg	<50	50	DIN EN 14039 : 2005-01 + LAGA KW/04 : 2019-09
Naphthalin	mg/kg	<0,010 (NWG)	0,05	DIN ISO 18287 : 2006-05
Acenaphthylen	mg/kg	<0,010 (NWG)	0,05	DIN ISO 18287 : 2006-05
Acenaphthen	mg/kg	<0,010 (NWG)	0,05	DIN ISO 18287 : 2006-05
Fluoren	mg/kg	<0,010 (NWG)	0,05	DIN ISO 18287 : 2006-05
Phenanthren	mg/kg	<0,010 (NWG)	0,05	DIN ISO 18287 : 2006-05
Anthracen	mg/kg	<0,010 (NWG)	0,05	DIN ISO 18287 : 2006-05
Fluoranthen	mg/kg	<0,010 (NWG)	0,05	DIN ISO 18287 : 2006-05
Pyren	mg/kg	<0,010 (NWG)	0,05	DIN ISO 18287 : 2006-05
Benzo(a)anthracen	mg/kg	<0,010 (NWG)	0,05	DIN ISO 18287 : 2006-05
Chrysen	mg/kg	<0,010 (NWG)	0,05	DIN ISO 18287 : 2006-05
Benzo(b)fluoranthen	mg/kg	<0,010 (NWG)	0,05	DIN ISO 18287 : 2006-05
Benzo(k)fluoranthen	mg/kg	<0,010 (NWG)	0,05	DIN ISO 18287 : 2006-05
Benzo(a)pyren	mg/kg	<0,010 (NWG)	0,05	DIN ISO 18287 : 2006-05
Dibenzo(ah)anthracen	mg/kg	<0,010 (NWG)	0,05	DIN ISO 18287 : 2006-05
Benzo(ghi)perylen	mg/kg	<0,010 (NWG)	0,05	DIN ISO 18287 : 2006-05

Deutsche Akkreditierungsstelle D-PL-14289-01-00

Seite 1 von 4

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

Datum 26.03.2024 Kundennr. 27018091

PRÜFBERICHT

Auftrag 3527924 223299 Öhringen BG Wammesfeld

Analysennr. 387221 Bodenmaterial/Baggergut Kunden-Probenbezeichnung MP 1 RKS 2-4+5 / 0,2 - 3,0 m

	Einheit	Ergebnis	BestGr.	Methode
Indeno(1,2,3-cd)pyren	mg/kg	<0,010 (NWG)	0,05	DIN ISO 18287 : 2006-05
PAK EPA Summe gem. BBodSchV 2021	mg/kg	<1,0 ×)	1	Berechnung aus Messwerten der Einzelparameter
PAK EPA Summe gem. ErsatzbaustoffV	mg/kg	<1,0 #5)	1	Berechnung aus Messwerten der Einzelparameter
PCB (28)	mg/kg	<0,0010 (NWG)	0,005	DIN EN 17322 : 2021-03
PCB (52)	mg/kg	<0,0010 (NWG)	0,005	DIN EN 17322 : 2021-03
PCB (101)	mg/kg	<0,0010 (NWG)	0,005	DIN EN 17322 : 2021-03
PCB (118)	mg/kg	<0,0010 (NWG)	0,005	DIN EN 17322 : 2021-03
PCB (138)	mg/kg	<0,0010 (NWG)	0,005	DIN EN 17322 : 2021-03
PCB (153)	mg/kg	<0,0010 (NWG)	0,005	DIN EN 17322 : 2021-03
PCB (180)	mg/kg	<0,0010 (NWG)	0,005	DIN EN 17322 : 2021-03
PCB 7 Summe gem. BBodSchV 2021	mg/kg	<0,010 ×)	0,01	Berechnung aus Messwerten der Einzelparameter
PCB 7 Summe gem. ErsatzbaustoffV	mg/kg	<0,010 #5)	0,01	Berechnung aus Messwerten der Einzelparameter

ErsatzbaustoffV	IIIg/Ng	10,010	0,01	Einzelparameter
Eluat				
Eluatanalyse in der Fraktion <32 mm				DIN 19529 : 2015-12
Fraktion < 32 mm	%	° 100	0,1	DIN 19747 : 2009-07
Fraktion > 32 mm	%	° <0,1	0,1	Berechnung aus dem Messwert
Eluat (DIN 19529)		0		DIN 19529 : 2015-12
Temperatur Eluat	°C	20,1	0	DIN 38404-4 : 1976-12
pH-Wert		7,6	0	DIN EN ISO 10523 : 2012-04
elektrische Leitfähigkeit	μS/cm	60	10	DIN EN 27888 : 1993-11
Sulfat (SO4)	mg/l	<2,0	2	DIN EN ISO 10304-1 : 2009-07
Arsen (As)	μg/l	<2,5	2,5	DIN EN ISO 17294-2 : 2017-01
Blei (Pb)	μg/l	7	1	DIN EN ISO 17294-2 : 2017-01
Cadmium (Cd)	μg/l	<0,25	0,25	DIN EN ISO 17294-2 : 2017-01
Chrom (Cr)	μg/l	1,4	1	DIN EN ISO 17294-2 : 2017-01
Kupfer (Cu)	μg/l	18	5	DIN EN ISO 17294-2 : 2017-01
Nickel (Ni)	μg/l	10	5	DIN EN ISO 17294-2 : 2017-01
Quecksilber (Hg)	μg/l	0,11	0,025	DIN EN ISO 12846 : 2012-08
Thallium (TI)	μg/l	<0,06	0,06	DIN EN ISO 17294-2 : 2017-01
Zink (Zn)	μg/l	34	30	DIN EN ISO 17294-2 : 2017-01
Trübung nach GF-Filtration	NTU	210	0,1	DIN EN ISO 7027 : 2000-04
PCB (28)	μg/l	<0,00030 (NWG)	0,001	DIN 38407-37 : 2013-11
PCB (52)	μg/l	<0,00030 (NWG)	0,001	DIN 38407-37 : 2013-11
PCB (101)	μg/l	<0,00030 (NWG)	0,001	DIN 38407-37 : 2013-11
PCB (118)	μg/l	<0,00030 (NWG)	0,001	DIN 38407-37 : 2013-11
PCB (138)	μg/l	<0,0020 wf)	0,002	DIN 38407-37 : 2013-11
PCB (153)	μg/l	<0,0020 wf)	0,002	DIN 38407-37 : 2013-11
PCB (180)	μg/l	<0,0020 wf)	0,002	DIN 38407-37 : 2013-11
PCB 7 Summe gem. ErsatzbaustoffV	μg/l	0,0030 #5)	0,003	Berechnung aus Messwerten der Einzelparameter
PCB 7 Summe gem. BBodSchV 2021	µg/l	<0,0030 ×)	0,003	Berechnung aus Messwerten der Einzelparameter
Naphthalin	μg/l	<0,010 (+)	0,01	DIN 38407-39 : 2011-09
1-Methylnaphthalin	μg/l	<0,0030 (NWG)	0,01	DIN 38407-39 : 2011-09
2-Methylnaphthalin	μg/l	<0,0030 (NWG)	0,01	DIN 38407-39 : 2011-09

Seite 2 von 4

diesem Dokument berichteten Verfahren sind gemäß DIN EN ISO/IEC 17025:2018 akkreditiert. Ausschließlich nicht akkreditierte Verfahren sind mit dem Symbol " *) * gekennzeichnet.

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

26.03.2024 Datum Kundennr. 27018091

PRÜFBERICHT

3527924 223299 Öhringen BG Wammesfeld Auftrag

Analysennr. 387221 Bodenmaterial/Baggergut Kunden-Probenbezeichnung MP 1 RKS 2-4+5 / 0,2 - 3,0 m

	Einheit	Ergebnis	BestGr.	Methode
Acenaphthylen	μg/l	<0,0030 (NWG)	0,01	DIN 38407-39 : 2011-09
Acenaphthen	μg/l	<0,010 (+)	0,01	DIN 38407-39 : 2011-09
Fluoren	μg/l	<0,010 (+)	0,01	DIN 38407-39 : 2011-09
Phenanthren	μg/l	0,035	0,01	DIN 38407-39 : 2011-09
Anthracen	μg/l	<0,0030 (NWG)	0,01	DIN 38407-39 : 2011-09
Anthracen Fluoranthen Pyren Benzo(a)anthracen	μg/l	0,027	0,01	DIN 38407-39 : 2011-09
Pyren	μg/l	0,012	0,01	DIN 38407-39 : 2011-09
Benzo(a)anthracen	μg/l	<0,0030 (NWG)	0,01	DIN 38407-39 : 2011-09
Chrysen	μg/l	<0,010 (+)	0,01	DIN 38407-39 : 2011-09
Benzo(b)fluoranthen	μg/l	<0,010 (+)	0,01	DIN 38407-39 : 2011-09
Benzo(b)fluoranthen Benzo(k)fluoranthen Benzo(a)pyren Dibenzo(ah)anthracen Benzo(ghi)perylen Indeno(1,2,3-cd)pyren	μg/l	<0,0030 (NWG)	0,01	DIN 38407-39 : 2011-09
Benzo(a)pyren	μg/l	<0,010 (+)	0,01	DIN 38407-39 : 2011-09
Dibenzo(ah)anthracen	μg/l	<0,020 wf)	0,02	DIN 38407-39 : 2011-09
Benzo(ghi)perylen	μg/l	<0,020 wf)	0,02	DIN 38407-39 : 2011-09
	μg/l	<0,020 wf)	0,02	DIN 38407-39 : 2011-09
Naphthalin/MethylnaphSumme gem. BBodSchV 2021 Naphthalin/MethylnaphSumme gem.	μg/l	<0,050 x)	0,05	Berechnung aus Messwerten der Einzelparameter
	μg/l	<0,050 #5)	0,05	Berechnung aus Messwerten der Einzelparameter
PAK 15 Summe gem. BBodSchV 2021 PAK 15 Summe gem.	µg/l	0,074 ×)	0,05	Berechnung aus Messwerten der Einzelparameter
PAK 15 Summe gem. ErsatzbaustoffV	μg/l	0,13 #5)	0,05	Berechnung aus Messwerten der Einzelparameter

Erläuterung: Das Zeichen "<" oder n.b. in der Spalte Ergebnis bedeutet, der betreffende Parameter ist bei nebenstehender

Bestimmungsgrenze nicht quantifizierbar. Das Zeichen "<....(NWG)" oder n.n. in der Spalte Ergebnis bedeutet, der betreffende Parameter ist bei nebenstehender Nachweisgrenze

nicht nachzuweisen. Das Zeichen "<....(+)" in der Spalte Ergebnis bedeutet, der betreffende Parameter wurde im Bereich zwischen Nachweisgrenze und

Bestimmungsgrenze qualitativ nachgewiesen. Die parameterspezifischen analytischen Messunsicherheiten sowie Informationen zum Berechnungsverfahren sind auf Anfrage verfügbar, sofern die berichteten Ergebnisse oberhalb der parameterspezifischen Bestimmungsgrenze liegen. Die

Mindestleistungskriterien der angewandten Verfahren beruhen bezüglich der Messunsicherheit in der Regel auf der Richtlinie 2009/90/EG der Europäischen Kommission.

Die Analysenwerte der Feststoffparameter beziehen sich auf die Trockensubstanz, bei den mit ° gekennzeichneten Parametern auf die Original substanz.

Anmerkung zur Messung nach DIN EN ISO 10304-1: 2009-07:

Für die Messung wurde das erstellte Eluat/Perkolat bis zur weiteren Bearbeitung im Dunkeln gekühlt aufbewahrt.

Anmerkung zur Messung nach DIN EN ISO 10523: 2012-04:

Für die Messung wurde das erstellte Eluat/Perkolat bis zur weiteren Bearbeitung im Dunkeln gekühlt aufbewahrt.

Anmerkung zur Messung nach DIN EN ISO 12846: 2012-08:

Für die Messung wurde das erstellte Eluat/Perkolat mittels 30%iger Salzsäure stabilisiert.

ISO/IEC

Ш

gemäß

Verfahren sind

Dokument berichteten

Die in diesem

x) Einzelwerte, die die Nachweis- oder Bestimmungsgrenze unterschreiten, wurden nicht berücksichtigt.
#5) Einzelwerte, die die Nachweisgrenze unterschreiten, wurden nicht berücksichtigt. Bei Einzelwerten, die zwischen Nachweis- und Bestimmungsgrenze liegen, wurde die halbe Bestimmungsgrenze zur Berechnung zugrunde gelegt.
wf) Die Wiederfindung eines oder mehrerer intermen Standards liegen bei vorliegender Probe bei <50%, jedoch >10%. Es ist somit eine erhöhte Messunsicherheit zu erwarten.

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

Datum 26.03.2024 Kundennr. 27018091

PRÜFBERICHT

Symbol

dem

Ħ

sind

akkreditierte

Ausschließlich

akkreditiert.

17025:2018

gemäß DIN EN

sind

Die in diesem Dokument berichteten Verfahren

Auftrag 3527924 223299 Öhringen BG Wammesfeld

Analysennr. 387221 Bodenmaterial/Baggergut Kunden-Probenbezeichnung MP 1 RKS 2-4+5 / 0,2 - 3,0 m

Anmerkung zur Messung nach DIN EN ISO 17294-2: 2017-01:

Für die Messung wurde das erstellte Eluat/Perkolat mittels konzentrierter Salpetersäure stabilisiert.

Anmerkung zur Messung nach DIN EN ISO 7027: 2000-04:

Für die Messung wurde das erstellte Eluat/Perkolat bis zur weiteren Bearbeitung im Dunkeln gekühlt aufbewahrt.

Anmerkung zur Messung nach DIN EN 27888 : 1993-11:

Für die Messung wurde das erstellte Eluat/Perkolat bis zur Messung im Dunkeln gekühlt aufbewahrt.

Anmerkung zur Messung nach DIN EN 38404-4: 1976-12:

Für die Messung wurde das erstellte Eluat/Perkolat nicht stabilisiert.

Anmerkung zur Messung nach DIN 38407-37: 2013-11:

Für die Messung wurde das erstellte Eluat/Perkolat bis zur weiteren Bearbeitung im Dunkeln gekühlt aufbewahrt.

Anmerkung zur Messung nach DIN 38407-39 : 2011-09:

Für die Messung wurde das erstellte Eluat/Perkolat bis zur weiteren Bearbeitung im Dunkeln gekühlt aufbewahrt.

Anmerkung zur Bestimmung der Kohlenwasserstoffe gem. DIN EN 14039 : 2005-01 + LAGA KW/04 : 2019-09:

Das Probenmaterial wurde mittels Schütteln extrahiert und über eine Florisilsäule aufgereinigt.

Für die Eluaterstellung wurden je Ansatz 350 g Trockenmasse +/- 5g mit 700 ml deionisiertem Wasser versetzt und über einen Zeitraum von 24h bei 5 Umdrehungen pro Minute im Überkopfschüttler eluiert. Bei Bedarf werden mehrere Ansätze parallel eluiert. Die Fest-/Flüssigphasentrennung erfolgte für hydrophile Stoffe gemäß Zentrifugation/Membranfiltration, für hydrophobe Stoffe gemäß Zentrifugation/Glasfaserfiltration.

Beginn der Prüfungen: 08.03.2024 Ende der Prüfungen: 22.03.2024

Die Ergebnisse beziehen sich ausschließlich auf die geprüften Gegenstände. In Fällen, wo das Prüflabor nicht für die Probenahme verantwortlich war, gelten die berichteten Ergebnisse für die Proben wie erhalten. Das Laboratorium ist nicht für die vom Kunden bereitgestellten Informationen verantwortlich. Die ggf. im vorliegenden Prüfbericht dargestellten Kundeninformationen unterliegen nicht der Akkreditierung des Laboratoriums und können sich auf die Validität der Prüfergebnisse auswirken. Die auszugsweise Vervielfältigung des Berichts ohne unsere schriftliche Genehmigung ist nicht zulässig. Die Ergebnisse in diesem Prüfbericht werden gemäß der mit Ihnen schriftlich gemäß Auftragsbestätigung getroffenen Vereinbarung in vereinfachter Weise i.S. der DIN EN ISO/IEC 17025:2018, Abs. 7.8.1.3 berichtet.

AGROLAB Labor GmbH, Sebastian Waldinger, Tel. 08765/93996-700 serviceteam4.bruckberg@agrolab.de Kundenbetreuung

Dieser elektronisch übermittelte Ergebnisbericht wurde geprüft und freigegeben. Er entspricht den Anforderungen der EN ISO/IEC 17025:2017 an vereinfachte Ergebnisberichte und ist ohne Unterschrift gültig.

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

AGROLAB Labor GmbH, Dr-Pauling-Str.3, 84079 Bruckberg

GMP GEOTECHNIK GMBH & CO. KG Hedanstr. 17 97084 WÜRZBURG

> Datum 26.03.2024 Kundennr. 27018091

PRÜFBERICHT

Auftrag **3527924** 223299 Öhringen BG Wammesfeld

Analysennr. 387224 Bodenmaterial/Baggergut

Probeneingang **08.03.2024**Probenahme **keine Angabe**

Probenehmer Auftraggeber (Steigerwald)
Kunden-Probenbezeichnung MP 2 RKS 12+13 / 0,3 - 2,3 m

Einheit Ergebnis Best.-Gr. Methode

Feststoff

2	1 03(3(0))				
7	Analyse in der Fraktion < 2mm				DIN 19747 : 2009-07
Ē	Fraktion < 2 mm (Wägung)	%	98,7	0,1	DIN 19747 : 2009-07
<u>0</u>	Masse Laborprobe	kg	3,40	0,001	DIN 19747 : 2009-07
פַ	Trockensubstanz	%	° 81,9	0,1	DIN EN 15934 : 2012-11
<u> </u>	Wassergehalt	%	° 18,1		Berechnung aus dem Messwert
Š	Kohlenstoff(C) organisch (TOC)	%	0,84	0,1	DIN EN 15936 : 2012-11
פ ב	EOX	mg/kg	<0,30	0,3	DIN 38414-17 : 2017-01
=	Königswasseraufschluß	3 3			DIN EN 13657 : 2003-01
3	Arsen (As)	mg/kg	7,4	0,8	DIN EN 16171 : 2017-01
Ď	Blei (Pb)	mg/kg	18	2	DIN EN 16171 : 2017-01
222	Cadmium (Cd)	mg/kg	0,15	0,13	DIN EN 16171 : 2017-01
ξ.	Chrom (Cr)	mg/kg	30	1	DIN EN 16171 : 2017-01
	Kupfer (Cu)	mg/kg	14	1	DIN EN 16171 : 2017-01
2	Nickel (Ni)	mg/kg	26	1	DIN EN 16171 : 2017-01
o g	Quecksilber (Hg)	mg/kg	0,06	0,05	DIN EN ISO 12846 : 2012-08
2	Thallium (TI)	mg/kg	0,2	0,1	DIN EN 16171 : 2017-01
020	Zink (Zn)	mg/kg	48	6	DIN EN 16171 : 2017-01
ב	Kohlenwasserstoffe C10-C22 (GC)	mg/kg	<50	50	DIN EN 14039 : 2005-01 + LAGA KW/04 : 2019-09
	Kohlenwasserstoffe C10-C40	mg/kg	<50	50	DIN EN 14039 : 2005-01 + LAGA KW/04 : 2019-09
	Naphthalin	mg/kg	<0,010 (NWG)	0,05	DIN ISO 18287 : 2006-05
2	Acenaphthylen	mg/kg	0,057	0,05	DIN ISO 18287 : 2006-05
ğ	Acenaphthen	mg/kg	<0,010 (NWG)	0,05	DIN ISO 18287 : 2006-05
96	Fluoren	mg/kg	<0,010 (NWG)	0,05	DIN ISO 18287 : 2006-05
5	Phenanthren	mg/kg	0,068	0,05	DIN ISO 18287 : 2006-05
Ď	Anthracen	mg/kg	<0,050 (+)	0,05	DIN ISO 18287 : 2006-05
ק ה	Fluoranthen	mg/kg	0,41	0,05	DIN ISO 18287 : 2006-05
<u> </u>	Pyren	mg/kg	0,33	0,05	DIN ISO 18287 : 2006-05
<u></u>	Benzo(a)anthracen	mg/kg	0,21	0,05	DIN ISO 18287 : 2006-05
<u> </u>	Chrysen	mg/kg	0,24	0,05	DIN ISO 18287 : 2006-05
=	Benzo(b)fluoranthen	mg/kg	0,23	0,05	DIN ISO 18287 : 2006-05
5	Benzo(k)fluoranthen	mg/kg	0,11	0,05	DIN ISO 18287 : 2006-05
5	Benzo(a)pyren	mg/kg	0,23	0,05	DIN ISO 18287 : 2006-05
<u></u>	Dibenzo(ah)anthracen	mg/kg	<0,050 (+)	0,05	DIN ISO 18287 : 2006-05
5	Benzo(ghi)perylen	mg/kg	0,15	0,05	DIN ISO 18287 : 2006-05

Seite 1 von 4

Die in diesem Dokument berichteten Verfahren sind gemäß DIN EN ISO/IEC 17025:2018 akkreditiert. Ausschließlich nicht akkreditierte Verfahren sind mit dem

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

Your labs. Your service.

Best.-Gr.

Datum 26.03.2024 Kundennr. 27018091

Methode

PRÜFBERICHT

Auftrag 3527924 223299 Öhringen BG Wammesfeld

Analysennr. 387224 Bodenmaterial/Baggergut Kunden-Probenbezeichnung MP 2 RKS 12+13 / 0,3 - 2,3 m Ergebnis Einheit

Indeno(1,2,3-cd)pyren	mg/kg	0,16	0,05	DIN ISO 18287 : 2006-05
PAK EPA Summe gem.	mg/kg	2,2 ×)	1	Berechnung aus Messwerten der
BBodSchV 2021				Einzelparameter
PAK EPA Summe gem.	mg/kg	2,2 #5)	1	Berechnung aus Messwerten der Einzelparameter
ErsatzbaustoffV		-0.0040 (NIMC)	0.005	· ·
PCB (28)	mg/kg	<0,0010 (NWG)	0,005	DIN EN 17322 : 2021-03
PCB (52)	mg/kg	<0,0010 (NWG)	0,005	DIN EN 17322 : 2021-03
PCB (101)	mg/kg	<0,0010 (NWG)	0,005	DIN EN 17322 : 2021-03
PCB (118)	mg/kg	<0,0010 (NWG)	0,005	DIN EN 17322 : 2021-03
PCB (138)	mg/kg	<0,0010 (NWG)	0,005	DIN EN 17322 : 2021-03
PCB (153)	mg/kg	<0,0010 (NWG)	0,005	DIN EN 17322 : 2021-03
PCB (180)	mg/kg	<0,0010 (NWG)	0,005	DIN EN 17322 : 2021-03
PCB 7 Summe gem. BBodSchV 2021	mg/kg	<0,010 x)	0,01	Berechnung aus Messwerten der Einzelparameter
PCB 7 Summe gem. ErsatzbaustoffV	mg/kg	<0,010 #5)	0,01	Berechnung aus Messwerten der Einzelparameter
Eluat				
Eluatanalyse in der Fraktion <32 mm				DIN 19529 : 2015-12
Fraktion < 32 mm	%	° 100	0,1	DIN 19747 : 2009-07
Fraktion > 32 mm	%	° <0,1	0,1	Berechnung aus dem Messwert
Eluat (DIN 19529)		۰		DIN 19529 : 2015-12
Temperatur Eluat	°C	19,7	0	DIN 38404-4 : 1976-12
pH-Wert		8,1	0	DIN EN ISO 10523 : 2012-04
elektrische Leitfähigkeit	µS/cm	218	10	DIN EN 27888 : 1993-11
Sulfat (SO4)	mg/l	12	2	DIN EN ISO 10304-1 : 2009-07
Arsen (As)	µg/l	<2,5	2,5	DIN EN ISO 17294-2 : 2017-01
Blei (Pb)	μg/l	<1	1	DIN EN ISO 17294-2 : 2017-01
Cadmium (Cd)	μg/l	<0,25	0,25	DIN EN ISO 17294-2 : 2017-01
Chrom (Cr)	µg/l	2,1	1	DIN EN ISO 17294-2 : 2017-01
Kupfer (Cu)	μg/l	<5	5	DIN EN ISO 17294-2 : 2017-01
Nickel (Ni)	µg/l	<5	5	DIN EN ISO 17294-2 : 2017-01
Quecksilber (Hg)	µg/l	<0,025	0,025	DIN EN ISO 12846 : 2012-08
Thallium (TI)	μg/l	<0,06	0,06	DIN EN ISO 17294-2 : 2017-01
Zink (Zn)	µg/l	<30	30	DIN EN ISO 17294-2 : 2017-01
Trübung nach GF-Filtration	NTU	7,1	0,1	DIN EN ISO 7027 : 2000-04
PCB (28)	µg/l	<0,00030 (NWG)	0,001	DIN 38407-37 : 2013-11
PCB (52)	μg/l	<0,00030 (NWG)	0,001	DIN 38407-37 : 2013-11
PCB (101)	μg/l	<0,00030 (NWG)	0,001	DIN 38407-37 : 2013-11
PCB (118)	µg/l	<0,00030 (NWG)	0,001	DIN 38407-37 : 2013-11
PCB (138)	μg/l	<0,00030 (NWG)	0,001	DIN 38407-37 : 2013-11
PCB (153)	µg/l	<0,00030 (NWG)	0,001	DIN 38407-37 : 2013-11
PCB (180)	μg/l	<0,00030 (NWG)	0,001	DIN 38407-37 : 2013-11
PCB 7 Summe gem.	μg/l	<0,0030 #5)	0,003	Berechnung aus Messwerten der
ErsatzbaustoffV	. 0	,		Einzelparameter
PCB 7 Summe gem. BBodSchV 2021	μg/l	<0,0030 x)	0,003	Berechnung aus Messwerten der Einzelparameter
Naphthalin	μg/l	0,012	0,01	DIN 38407-39 : 2011-09
1-Methylnaphthalin	μg/l	<0,010 (+)	0,01	DIN 38407-39 : 2011-09
2-Methylnaphthalin	μg/l	<0,010 (+)	0,01	DIN 38407-39 : 2011-09
			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·

Seite 2 von 4 Deutsche Akkreditierungsstelle D-PL-14289-01-00

AG Landshut HRB 7131 Ust/VAT-Id-Nr.: DE 128 944 188

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

26.03.2024 Datum Kundennr. 27018091

PRÜFBERICHT

3527924 223299 Öhringen BG Wammesfeld Auftrag

Analysennr. 387224 Bodenmaterial/Baggergut Kunden-Probenbezeichnung MP 2 RKS 12+13 / 0,3 - 2,3 m

	Einheit	Ergebnis	BestGr.	Methode
Acenaphthylen	μg/l	<0,0030 (NWG)	0,01	DIN 38407-39 : 2011-09
Acenaphthen	μg/l	<0,010 (+)	0,01	DIN 38407-39 : 2011-09
Fluoren	μg/l	<0,010 (+)	0,01	DIN 38407-39 : 2011-09
Phenanthren	μg/l	0,022	0,01	DIN 38407-39 : 2011-09
Anthracen	μg/l	<0,010 (+)	0,01	DIN 38407-39 : 2011-09
Anthracen Fluoranthen Pyren Benzo(a)anthracen	μg/l	<0,010 (+)	0,01	DIN 38407-39 : 2011-09
Pyren	μg/l	<0,010 (+)	0,01	DIN 38407-39 : 2011-09
Benzo(a)anthracen	μg/l	<0,0030 (NWG)	0,01	DIN 38407-39 : 2011-09
Chrysen	μg/l	<0,0030 (NWG)	0,01	DIN 38407-39 : 2011-09
Benzo(b)fluoranthen	μg/l	<0,0030 (NWG)	0,01	DIN 38407-39 : 2011-09
Benzo(b)fluoranthen Benzo(k)fluoranthen Benzo(a)pyren Dibenzo(ah)anthracen Benzo(ghi)perylen Indeno(1,2,3-cd)pyren	μg/l	<0,0030 (NWG)	0,01	DIN 38407-39 : 2011-09
Benzo(a)pyren	μg/l	<0,0030 (NWG)	0,01	DIN 38407-39 : 2011-09
Dibenzo(ah)anthracen	μg/l	<0,0030 (NWG)	0,01	DIN 38407-39 : 2011-09
Benzo(ghi)perylen	μg/l	<0,0030 (NWG)	0,01	DIN 38407-39 : 2011-09
	μg/l	<0,0030 (NWG)	0,01	DIN 38407-39 : 2011-09
Naphthalin/MethylnaphSumme gem. BBodSchV 2021 Naphthalin/MethylnaphSumme gem.	μg/l	<0,050 x)	0,05	Berechnung aus Messwerten der Einzelparameter
	μg/l	<0,050 #5)	0,05	Berechnung aus Messwerten der Einzelparameter
PAK 15 Summe gem. BBodSchV 2021 PAK 15 Summe gem.	µg/l	<0,050 x)	0,05	Berechnung aus Messwerten der Einzelparameter
PAK 15 Summe gem. ErsatzbaustoffV	µg/l	<0,050 #5)	0,05	Berechnung aus Messwerten der Einzelparameter

Erläuterung: Das Zeichen "<" oder n.b. in der Spalte Ergebnis bedeutet, der betreffende Parameter ist bei nebenstehender Bestimmungsgrenze nicht quantifizierbar.

Das Zeichen "<....(NWG)" oder n.n. in der Spalte Ergebnis bedeutet, der betreffende Parameter ist bei nebenstehender Nachweisgrenze nicht nachzuweisen.

Das Zeichen "<....(+)" in der Spalte Ergebnis bedeutet, der betreffende Parameter wurde im Bereich zwischen Nachweisgrenze und Bestimmungsgrenze qualitativ nachgewiesen.

Die parameterspezifischen analytischen Messunsicherheiten sowie Informationen zum Berechnungsverfahren sind auf Anfrage verfügbar, sofern die berichteten Ergebnisse oberhalb der parameterspezifischen Bestimmungsgrenze liegen. Die Mindestleistungskriterien der angewandten Verfahren beruhen bezüglich der Messunsicherheit in der Regel auf der Richtlinie 2009/90/EG der Europäischen Kommission.

Die Analysenwerte der Feststoffparameter beziehen sich auf die Trockensubstanz, bei den mit ° gekennzeichneten Parametern auf die Originalsubstanz.

Anmerkung zur Messung nach DIN EN ISO 10304-1: 2009-07:

Für die Messung wurde das erstellte Eluat/Perkolat bis zur weiteren Bearbeitung im Dunkeln gekühlt aufbewahrt.

Anmerkung zur Messung nach DIN EN ISO 10523: 2012-04:

Für die Messung wurde das erstellte Eluat/Perkolat bis zur weiteren Bearbeitung im Dunkeln gekühlt aufbewahrt.

Anmerkung zur Messung nach DIN EN ISO 12846: 2012-08:

Für die Messung wurde das erstellte Eluat/Perkolat mittels 30%iger Salzsäure stabilisiert.

17025:2018 akkreditiert.

DIN EN ISO/IEC

gemäß

berichteten Verfahren sind

Die in diesem Dokument

x) Einzelwerte, die die Nachweis- oder Bestimmungsgrenze unterschreiten, wurden nicht berücksichtigt. #5) Einzelwerte, die die Nachweisgrenze unterschreiten, wurden nicht berücksichtigt. Bei Einzelwerten, die zwischen Nachweis- und Bestimmungsgrenze liegen, wurde die halbe Bestimmungsgrenze zur Berechnung zugrunde gelegt.

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

Datum 26.03.2024 Kundennr. 27018091

PRÜFBERICHT

Symbol

dem

Ħ

sind

akkreditierte

Ausschließlich

akkreditiert.

17025:2018

gemäß DIN EN

sind

Die in diesem Dokument berichteten Verfahren

Auftrag 3527924 223299 Öhringen BG Wammesfeld

Analysennr. 387224 Bodenmaterial/Baggergut Kunden-Probenbezeichnung MP 2 RKS 12+13 / 0,3 - 2,3 m

Anmerkung zur Messung nach DIN EN ISO 17294-2: 2017-01:

Für die Messung wurde das erstellte Eluat/Perkolat mittels konzentrierter Salpetersäure stabilisiert.

Anmerkung zur Messung nach DIN EN ISO 7027: 2000-04:

Für die Messung wurde das erstellte Eluat/Perkolat bis zur weiteren Bearbeitung im Dunkeln gekühlt aufbewahrt.

Anmerkung zur Messung nach DIN EN 27888 : 1993-11:

Für die Messung wurde das erstellte Eluat/Perkolat bis zur Messung im Dunkeln gekühlt aufbewahrt.

Anmerkung zur Messung nach DIN EN 38404-4: 1976-12:

Für die Messung wurde das erstellte Eluat/Perkolat nicht stabilisiert.

Anmerkung zur Messung nach DIN 38407-37: 2013-11:

Für die Messung wurde das erstellte Eluat/Perkolat bis zur weiteren Bearbeitung im Dunkeln gekühlt aufbewahrt.

Anmerkung zur Messung nach DIN 38407-39 : 2011-09:

Für die Messung wurde das erstellte Eluat/Perkolat bis zur weiteren Bearbeitung im Dunkeln gekühlt aufbewahrt.

Anmerkung zur Bestimmung der Kohlenwasserstoffe gem. DIN EN 14039 : 2005-01 + LAGA KW/04 : 2019-09:

Das Probenmaterial wurde mittels Schütteln extrahiert und über eine Florisilsäule aufgereinigt.

Für die Eluaterstellung wurden je Ansatz 350 g Trockenmasse +/- 5g mit 700 ml deionisiertem Wasser versetzt und über einen Zeitraum von 24h bei 5 Umdrehungen pro Minute im Überkopfschüttler eluiert. Bei Bedarf werden mehrere Ansätze parallel eluiert. Die Fest-/Flüssigphasentrennung erfolgte für hydrophile Stoffe gemäß Zentrifugation/Membranfiltration, für hydrophobe Stoffe gemäß Zentrifugation/Glasfaserfiltration.

Beginn der Prüfungen: 08.03.2024 Ende der Prüfungen: 22.03.2024

Die Ergebnisse beziehen sich ausschließlich auf die geprüften Gegenstände. In Fällen, wo das Prüflabor nicht für die Probenahme verantwortlich war, gelten die berichteten Ergebnisse für die Proben wie erhalten. Das Laboratorium ist nicht für die vom Kunden bereitgestellten Informationen verantwortlich. Die ggf. im vorliegenden Prüfbericht dargestellten Kundeninformationen unterliegen nicht der Akkreditierung des Laboratoriums und können sich auf die Validität der Prüfergebnisse auswirken. Die auszugsweise Vervielfältigung des Berichts ohne unsere schriftliche Genehmigung ist nicht zulässig. Die Ergebnisse in diesem Prüfbericht werden gemäß der mit Ihnen schriftlich gemäß Auftragsbestätigung getroffenen Vereinbarung in vereinfachter Weise i.S. der DIN EN ISO/IEC 17025:2018, Abs. 7.8.1.3 berichtet.

AGROLAB Labor GmbH, Sebastian Waldinger, Tel. 08765/93996-700 serviceteam4.bruckberg@agrolab.de Kundenbetreuung

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

AGROLAB Labor GmbH, Dr-Pauling-Str.3, 84079 Bruckberg

GMP GEOTECHNIK GMBH & CO. KG Hedanstr. 17 97084 WÜRZBURG

> Datum 26.03.2024 Kundennr. 27018091

PRÜFBERICHT

t dem Symbol

3527924 223299 Öhringen BG Wammesfeld

387225 Bodenmaterial/Baggergut

Auftrag
Analysennr.
Probeneingar
Probenahme Probeneingang 08.03.2024 keine Angabe

Probenehmer Auftraggeber (Steigerwald) Kunden-Probenbezeichnung MP 3 RKS 21 / 0,6 - 1,1 m

	Einheit	Ergebnis	BestGr.	Methode
-1-1-ff				

Analyse in der Fraktion < 2mm				DIN 19747 : 2009-0
raktion < 2 mm (Wägung)	%	89,1	0,1	DIN 19747 : 2009-0
Masse Laborprobe	kg	° 1,50	0,001	DIN 19747 : 2009-0
Trockensubstanz	%	° 83,1	0,1	DIN EN 15934 : 2012
<i>N</i> assergehalt	%	° 16,9		Berechnung aus dem Mess
Kohlenstoff(C) organisch (TOC)	%	0,42	0,1	DIN EN 15936 : 2012
EOX	mg/kg	<0,30	0,3	DIN 38414-17 : 2017
Königswasseraufschluß				DIN EN 13657 : 2003
Arsen (As)	mg/kg	7,7	0,8	DIN EN 16171 : 2017
Blei (Pb)	mg/kg	16	2	DIN EN 16171 : 2017
Cadmium (Cd)	mg/kg	0,21	0,13	DIN EN 16171 : 2017
Chrom (Cr)	mg/kg	29	1	DIN EN 16171 : 2017
Kupfer (Cu)	mg/kg	15	1	DIN EN 16171 : 2017
Nickel (Ni)	mg/kg	26	1	DIN EN 16171 : 2017
Quecksilber (Hg)	mg/kg	<0,05	0,05	DIN EN ISO 12846 : 201
Thallium (TI)	mg/kg	0,2	0,1	DIN EN 16171 : 2017
Zink (Zn)	mg/kg	44	6	DIN EN 16171 : 2017
Kohlenwasserstoffe C10-C22 (GC)	mg/kg	<50	50	DIN EN 14039 : 2005-01 + L KW/04 : 2019-09
Kohlenwasserstoffe C10-C40	mg/kg	<50	50	DIN EN 14039 : 2005-01 + L KW/04 : 2019-09
Naphthalin	mg/kg	<0,010 (NWG)	0,05	DIN ISO 18287 : 2006-
Acenaphthylen	mg/kg	<0,010 (NWG)	0,05	DIN ISO 18287 : 2006-
Acenaphthen	mg/kg	<0,010 (NWG)	0,05	DIN ISO 18287 : 2006-
Fluoren	mg/kg	<0,010 (NWG)	0,05	DIN ISO 18287 : 2006-
Phenanthren	mg/kg	<0,050 (+)	0,05	DIN ISO 18287 : 2006-
Anthracen	mg/kg	<0,050 (+)	0,05	DIN ISO 18287 : 2006-
Fluoranthen	mg/kg	0,057	0,05	DIN ISO 18287 : 2006-
Pyren	mg/kg	<0,050 (+)	0,05	DIN ISO 18287 : 2006-
Benzo(a)anthracen	mg/kg	<0,050 (+)	0,05	DIN ISO 18287 : 2006-
Chrysen	mg/kg	<0,050 (+)	0,05	DIN ISO 18287 : 2006-
Benzo(b)fluoranthen	mg/kg	<0,050 (+)	0,05	DIN ISO 18287 : 2006-
Benzo(k)fluoranthen	mg/kg	<0,050 ^{m)}	0,05	DIN ISO 18287 : 2006-
Benzo(a)pyren	mg/kg	<0,050 ^{m)}	0,05	DIN ISO 18287 : 2006-
Dibenzo(ah)anthracen	mg/kg	<0,010 (NWG)	0,05	DIN ISO 18287 : 2006-
Benzo(ghi)perylen	mg/kg	<0,050 (+)	0,05	DIN ISO 18287 : 2006-

Seite 1 von 4 ((DAkkS Deutsche Akkreditierungsstelle D-PL-14289-01-00

AG Landshut HRB 7131 Ust/VAT-Id-Nr.: DE 128 944 188

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

Your labs. Your service.

Datum 26.03.2024 Kundennr. 27018091

Methode

PRÜFBERICHT

Auftrag 3527924 223299 Öhringen BG Wammesfeld

Analysennr. 387225 Bodenmaterial/Baggergut

Einheit

Kunden-Probenbezeichnung MP 3 RKS 21 / 0,6 - 1,1 m

Indeno(1,2,3-cd)pyren	mg/kg	<0,050 (+)	0,05	DIN ISO 18287 : 2006-05
PAK EPA Summe gem. BBodSchV 2021	mg/kg	<1,0 ×)	1	Berechnung aus Messwerten de Einzelparameter
PAK EPA Summe gem. ErsatzbaustoffV	mg/kg	<1,0 #5)	1	Berechnung aus Messwerten de Einzelparameter
PCB (28)	mg/kg	<0,0010 (NWG)	0,005	DIN EN 17322 : 2021-03
PCB (52)	mg/kg	<0,0010 (NWG)	0,005	DIN EN 17322 : 2021-03
PCB (101)	mg/kg	<0,0010 (NWG)	0,005	DIN EN 17322 : 2021-03
PCB (118)	mg/kg	<0,0010 (NWG)	0,005	DIN EN 17322 : 2021-03
PCB (138)	mg/kg	<0,0010 (NWG)	0,005	DIN EN 17322 : 2021-03
PCB (153)	mg/kg	<0,0010 (NWG)	0,005	DIN EN 17322 : 2021-0
PCB (180)	mg/kg	<0,0010 (NWG)	0,005	DIN EN 17322 : 2021-03
PCB 7 Summe gem. BBodSchV 2021	mg/kg	<0,010 x)	0,01	Berechnung aus Messwerten de Einzelparameter
PCB 7 Summe gem. ErsatzbaustoffV	mg/kg	<0,010 #5)	0,01	Berechnung aus Messwerten de Einzelparameter
Eluat				
Eluatanalyse in der Fraktion <32 mm				DIN 19529 : 2015-12
Fraktion < 32 mm	%	° 100	0,1	DIN 19747 : 2009-07
Fraktion > 32 mm	%	° <0,1	0,1	Berechnung aus dem Messwe
Eluat (DIN 19529)		۰		DIN 19529 : 2015-12
Temperatur Eluat	°C	19,6	0	DIN 38404-4 : 1976-12
pH-Wert		11,5	0	DIN EN ISO 10523 : 2012-0
elektrische Leitfähigkeit	µS/cm	993	10	DIN EN 27888 : 1993-1
Sulfat (SO4)	mg/l	25	2	DIN EN ISO 10304-1 : 2009-0
Arsen (As)	μg/l	8,6	2,5	DIN EN ISO 17294-2 : 2017-0
Blei (Pb)	μg/l	<1	1	DIN EN ISO 17294-2 : 2017-0
Cadmium (Cd)	μg/l	<0,25	0,25	DIN EN ISO 17294-2 : 2017-0
Chrom (Cr)	μg/l	4	1	DIN EN ISO 17294-2 : 2017-0
Kupfer (Cu)	μg/l	150 ^{va)}	25	DIN EN ISO 17294-2 : 2017-0
Nickel (Ni)	μg/l	170 ^{va)}	25	DIN EN ISO 17294-2 : 2017-0
Quecksilber (Hg)	μg/l	<0,025	0,025	DIN EN ISO 12846 : 2012-0
Thallium (TI)	μg/l	<0,06	0,06	DIN EN ISO 17294-2 : 2017-0
Zink (Zn)	μg/l	<30	30	DIN EN ISO 17294-2 : 2017-0
Trübung nach GF-Filtration	NTU	2,0	0,1	DIN EN ISO 7027 : 2000-0
PCB (28)	µg/l	<0,00030 (NWG)	0,001	DIN 38407-37 : 2013-1
PCB (52)	μg/l	<0,00030 (NWG)	0,001	DIN 38407-37 : 2013-1
PCB (101)	µg/l	<0,00030 (NWG)	0,001	DIN 38407-37 : 2013-1
PCB (118)	μg/l	<0,00030 (NWG)	0,001	DIN 38407-37 : 2013-1
PCB (138)	μg/l	<0,00030 (NWG)	0,001	DIN 38407-37 : 2013-17
PCB (153)	μg/l	<0,00030 (NWG)	0,001	DIN 38407-37 : 2013-17
PCB (180)	μg/l	<0,00030 (NWG)	0,001	DIN 38407-37 : 2013-11
PCB 7 Summe gem.	μg/l	<0.0030 (14403)	0,003	Berechnung aus Messwerten de
ErsatzbaustoffV	μ9/1	20,0000	0,000	Einzelparameter
PCB 7 Summe gem. BBodSchV 2021	μg/l	<0,0030 x)	0,003	Berechnung aus Messwerten de Einzelparameter
Naphthalin	μg/l	0,39	0,01	DIN 38407-39 : 2011-09
1-Methylnaphthalin	μg/l	0,096	0,01	DIN 38407-39 : 2011-09
2-Methylnaphthalin	μg/l	0,10	0,01	DIN 38407-39 : 2011-09

Ergebnis

Best.-Gr.

Deutsche Akkreditierungsstelle D-PL-14289-01-00

Die in die

AG Landshut HRB 7131 Ust/VAT-Id-Nr.: DE 128 944 188

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

26.03.2024 **Datum** Kundennr. 27018091

PRÜFBERICHT

3527924 223299 Öhringen BG Wammesfeld Auftrag

Analysennr. 387225 Bodenmaterial/Baggergut

Kunden-Probenbezeichnung MP 3 RKS 21 / 0,6 - 1,1 m

	Einheit	Ergebnis	BestGr.	Methode
Acenaphthylen	µg/l	0,029	0,01	DIN 38407-39 : 2011-09
Acenaphthen	µg/l	0,086	0,01	DIN 38407-39 : 2011-09
Fluoren	μg/l	0,11	0,01	DIN 38407-39 : 2011-09
Phenanthren	μg/l	0,40	0,01	DIN 38407-39 : 2011-09
Anthracen	μg/l	0,062	0,01	DIN 38407-39 : 2011-09
Anthracen Fluoranthen Pyren Benzo(a)anthracen	μg/l	0,10	0,01	DIN 38407-39 : 2011-09
Pyren	μg/l	0,060	0,01	DIN 38407-39 : 2011-09
Benzo(a)anthracen	μg/l	<0,010 (+)	0,01	DIN 38407-39 : 2011-09
Chrysen	μg/l	<0,010 (+)	0,01	DIN 38407-39 : 2011-09
Benzo(b)fluoranthen Benzo(k)fluoranthen	μg/l	<0,0030 (NWG)	0,01	DIN 38407-39 : 2011-09
Benzo(k)fluoranthen	μg/l	<0,0030 (NWG)	0,01	DIN 38407-39 : 2011-09
Benzo(a)pyren	μg/l	<0,0030 (NWG)	0,01	DIN 38407-39 : 2011-09
Dibenzo(ah)anthracen Benzo(ghi)perylen Indeno(1,2,3-cd)pyren	µg/l	<0,0030 (NWG)	0,01	DIN 38407-39 : 2011-09
Benzo(ghi)perylen	µg/l	<0,0030 (NWG)	0,01	DIN 38407-39 : 2011-09
Indeno(1,2,3-cd)pyren	μg/l	<0,0030 (NWG)	0,01	DIN 38407-39 : 2011-09
Naphthalin/MethylnaphSumme gem. BBodSchV 2021 Naphthalin/MethylnaphSumme gem.	µg/l	0,59	0,05	Berechnung aus Messwerten der Einzelparameter
	μg/l	0,59 #5)	0,05	Berechnung aus Messwerten der Einzelparameter
PAK 15 Summe gem. BBodSchV 2021 PAK 15 Summe gem.	µg/l	0,85 x)	0,05	Berechnung aus Messwerten der Einzelparameter
PAK 15 Summe gem. ErsatzbaustoffV	μg/l	0,86 #5)	0,05	Berechnung aus Messwerten der Einzelparameter

x) Einzelwerte, die die Nachweis- oder Bestimmungsgrenze unterschreiten, wurden nicht berücksichtigt. #5) Einzelwerte, die die Nachweisgrenze unterschreiten, wurden nicht berücksichtigt. Bei Einzelwerten, die zwischen Nachweis- und Bestimmungsgrenze liegen, wurde die halbe Bestimmungsgrenze zur Berechnung zugrunde gelegt.
m) Die Nachweis-, bzw. Bestimmungsgrenze musste erhöht werden, da Matrixeffekte bzw. Substanzüberlagerungen eine Quantifizierung erschweren.

va) Die Nachweis- bzw. Bestimmungsgrenze musste erhöht werden, da die vorliegende Konzentration erforderte, die Probe in den gerätespezifischen Arbeitsbereich zu verdünnen.

Erläuterung: Das Zeichen "<" oder n.b. in der Spalte Ergebnis bedeutet, der betreffende Parameter ist bei nebenstehender Bestimmungsgrenze nicht quantifizierbar.

Das Zeichen "<....(NWG)" oder n.n. in der Spalte Ergebnis bedeutet, der betreffende Parameter ist bei nebenstehender Nachweisgrenze nicht nachzuweisen.

Das Zeichen "<....(+)" in der Spalte Ergebnis bedeutet, der betreffende Parameter wurde im Bereich zwischen Nachweisgrenze und Bestimmungsgrenze qualitativ nachgewiesen.

Die parameterspezifischen analytischen Messunsicherheiten sowie Informationen zum Berechnungsverfahren sind auf Anfrage verfügbar, sofern die berichteten Ergebnisse oberhalb der parameterspezifischen Bestimmungsgrenze liegen. Die Mindestleistungskriterien der angewandten Verfahren beruhen bezüglich der Messunsicherheit in der Regel auf der Richtlinie 2009/90/EG der Europäischen Kommission.

Die Analysenwerte der Feststoffparameter beziehen sich auf die Trockensubstanz, bei den mit ° gekennzeichneten Parametern auf die Originalsubstanz.

Anmerkung zur Messung nach DIN EN ISO 10304-1: 2009-07:

Für die Messung wurde das erstellte Eluat/Perkolat bis zur weiteren Bearbeitung im Dunkeln gekühlt aufbewahrt.

Anmerkung zur Messung nach DIN EN ISO 10523: 2012-04:

Für die Messung wurde das erstellte Eluat/Perkolat bis zur weiteren Bearbeitung im Dunkeln gekühlt aufbewahrt.

Anmerkung zur Messung nach DIN EN ISO 12846: 2012-08:

Für die Messung wurde das erstellte Eluat/Perkolat mittels 30%iger Salzsäure stabilisiert.

Seite 3 von 4 Deutsche Akkreditierungsstelle D-PL-14289-01-00

ISO/IEC 17025:2018 akkreditiert.

DIN EN

gemäß

berichteten Verfahren

ument

Dok

Die in diesem

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

Datum 26.03.2024 Kundennr. 27018091

PRÜFBERICHT

Symbol

dem

Ħ

sind

akkreditierte

Ausschließlich

akkreditiert.

17025:2018

gemäß DIN EN

sind

Die in diesem Dokument berichteten Verfahren

Auftrag 3527924 223299 Öhringen BG Wammesfeld

Analysennr. 387225 Bodenmaterial/Baggergut

Kunden-Probenbezeichnung MP 3 RKS 21 / 0,6 - 1,1 m

Anmerkung zur Messung nach DIN EN ISO 17294-2: 2017-01:

Für die Messung wurde das erstellte Eluat/Perkolat mittels konzentrierter Salpetersäure stabilisiert.

Anmerkung zur Messung nach DIN EN ISO 7027: 2000-04:

Für die Messung wurde das erstellte Eluat/Perkolat bis zur weiteren Bearbeitung im Dunkeln gekühlt aufbewahrt.

Anmerkung zur Messung nach DIN EN 27888 : 1993-11:

Für die Messung wurde das erstellte Eluat/Perkolat bis zur Messung im Dunkeln gekühlt aufbewahrt.

Anmerkung zur Messung nach DIN EN 38404-4: 1976-12:

Für die Messung wurde das erstellte Eluat/Perkolat nicht stabilisiert.

Anmerkung zur Messung nach DIN 38407-37: 2013-11:

Für die Messung wurde das erstellte Eluat/Perkolat bis zur weiteren Bearbeitung im Dunkeln gekühlt aufbewahrt.

Anmerkung zur Messung nach DIN 38407-39 : 2011-09:

Für die Messung wurde das erstellte Eluat/Perkolat bis zur weiteren Bearbeitung im Dunkeln gekühlt aufbewahrt.

Anmerkung zur Bestimmung der Kohlenwasserstoffe gem. DIN EN 14039 : 2005-01 + LAGA KW/04 : 2019-09:

Das Probenmaterial wurde mittels Schütteln extrahiert und über eine Florisilsäule aufgereinigt.

Für die Eluaterstellung wurden je Ansatz 350 g Trockenmasse +/- 5g mit 700 ml deionisiertem Wasser versetzt und über einen Zeitraum von 24h bei 5 Umdrehungen pro Minute im Überkopfschüttler eluiert. Bei Bedarf werden mehrere Ansätze parallel eluiert. Die Fest-/Flüssigphasentrennung erfolgte für hydrophile Stoffe gemäß Zentrifugation/Membranfiltration, für hydrophobe Stoffe gemäß Zentrifugation/Glasfaserfiltration.

Beginn der Prüfungen: 08.03.2024 Ende der Prüfungen: 26.03.2024

Die Ergebnisse beziehen sich ausschließlich auf die geprüften Gegenstände. In Fällen, wo das Prüflabor nicht für die Probenahme verantwortlich war, gelten die berichteten Ergebnisse für die Proben wie erhalten. Das Laboratorium ist nicht für die vom Kunden bereitgestellten Informationen verantwortlich. Die ggf. im vorliegenden Prüfbericht dargestellten Kundeninformationen unterliegen nicht der Akkreditierung des Laboratoriums und können sich auf die Validität der Prüfergebnisse auswirken. Die auszugsweise Vervielfältigung des Berichts ohne unsere schriftliche Genehmigung ist nicht zulässig. Die Ergebnisse in diesem Prüfbericht werden gemäß der mit Ihnen schriftlich gemäß Auftragsbestätigung getroffenen Vereinbarung in vereinfachter Weise i.S. der DIN EN ISO/IEC 17025:2018, Abs. 7.8.1.3 berichtet.

AGROLAB Labor GmbH, Sebastian Waldinger, Tel. 08765/93996-700 serviceteam4.bruckberg@agrolab.de Kundenbetreuung

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

AGROLAB Labor GmbH. Dr-Pauling-Str.3, 84079 Bruckberg

GMP GEOTECHNIK GMBH & CO. KG Hedanstr. 17 97084 WÜRZBURG

> Datum 26.03.2024 Kundennr. 27018091

> > Methode

PRÜFBERICHT

dem

3527924 223299 Öhringen BG Wammesfeld Auftrag

Analysennr. 387226 Bodenmaterial/Baggergut

Probeneingang 08.03.2024 Probenahme keine Angabe

Probenehmer Auftraggeber (Steigerwald) Kunden-Probenbezeichnung MP 4 RKS 18+22 / 0,2 - 1,6 m

Einheit

ij **Feststoff** Analyse in der Fraktion < 2mm DIN 19747: 2009-07 % DIN 19747: 2009-07 Fraktion < 2 mm (Wägung) 77.9 0,1 DIN 19747 : 2009-07 Masse Laborprobe kg 3,50 0,001 % 80,5 DIN EN 15934: 2012-11 Trockensubstanz 0,1 Berechnung aus dem Messwert Wassergehalt % 19,5 Kohlenstoff(C) organisch (TOC) % DIN EN 15936: 2012-11 0,76 0,1 DIN 38414-17: 2017-01 <0,30 0,3 mg/kg nicht Königswasseraufschluß DIN EN 13657: 2003-01 Arsen (As) 7.1 8,0 DIN EN 16171: 2017-01 mg/kg Blei (Pb) mg/kg 18 2 DIN EN 16171: 2017-01 Cadmium (Cd) mg/kg 0,17 0,13 DIN EN 16171: 2017-01 Chrom (Cr) mg/kg 29 1 DIN EN 16171 : 2017-01 17025:2018 akkreditiert. Kupfer (Cu) 14 DIN EN 16171: 2017-01 mg/kg 1 Nickel (Ni) mg/kg 22 1 DIN EN 16171: 2017-01 Quecksilber (Hg) 80,0 0,05 DIN EN ISO 12846: 2012-08 mg/kg Thallium (TI) 0.1 DIN EN 16171: 2017-01 mg/kg 0,1 DIN EN 16171 : 2017-01 Zink (Zn) mg/kg 46 6 Kohlenwasserstoffe C10-C22 (GC) DIN EN 14039 : 2005-01 + LAGA mg/kg <50 50 ISO/IEC KW/04: 2019-09 DIN EN 14039 : 2005-01 + LAGA Kohlenwasserstoffe C10-C40 < 50 50 mg/kg KW/04: 2019-09 Ш DIN ISO 18287: 2006-05 Naphthalin <0.010 (NWG) 0.05 mg/kg N DIN ISO 18287: 2006-05 Acenaphthylen mg/kg <0,050 (+) 0.05 qemäß DIN ISO 18287 : 2006-05 Acenaphthen <0,010 (NWG) 0,05 mg/kg DIN ISO 18287: 2006-05 Fluoren mg/kg <0,010 (NWG) 0,05 sind DIN ISO 18287: 2006-05 mg/kg <0,050 (+) 0,05 berichteten Verfahren Anthracen <0,050 (+) DIN ISO 18287: 2006-05 0,05 mg/kg DIN ISO 18287: 2006-05 Fluoranthen 0,05 mg/kg 0,12 DIN ISO 18287: 2006-05 Pyren mg/kg 0.090 0.05 DIN ISO 18287: 2006-05 0,05 Benzo(a)anthracen mg/kg 0,060 DIN ISO 18287: 2006-05 Chrysen 0,058 0,05 mg/kg DIN ISO 18287 : 2006-05 Benzo(b)fluoranthen mg/kg 0,058 0.05 DIN ISO 18287 : 2006-05 Benzo(k)fluoranthen <0,050 (+) mg/kg 0,05 DIN ISO 18287: 2006-05 Benzo(a)pyren 0,056 0,05 mg/kg Dibenzo(ah)anthracen <0,010 (NWG) DIN ISO 18287: 2006-05 mg/kg 0,05

<0,050 (+)

Ergebnis

Best.-Gr.

0,05

Deutsche Akkreditierungsstelle D-PL-14289-01-00

DIN ISO 18287: 2006-05

Seite 1 von 4

Benzo(ghi)perylen

mg/kg

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

Your labs. Your service.

Datum 26.03.2024 Kundennr. 27018091

PRÜFBERICHT

Auftrag 3527924 223299 Öhringen BG Wammesfeld

Analysennr. 387226 Bodenmaterial/Baggergut Kunden-Probenbezeichnung MP 4 RKS 18+22 / 0.2 - 1.6 m

Kunden-Probenbezeichnung	MP 4 RKS 18+22 / 0,2 - 1,6 m					
	Einheit	Ergebnis	BestGr.	Methode		
Indeno(1,2,3-cd)pyren	mg/kg	<0,050 (+)	0,05	DIN ISO 18287 : 2006-05		
PAK EPA Summe gem. BBodSchV 2021	mg/kg	<1,0 ×)	1	Berechnung aus Messwerten d Einzelparameter		
PAK EPA Summe gem. ErsatzbaustoffV	mg/kg	<1,0 #5)	1	Berechnung aus Messwerten d Einzelparameter		
PCB (28)	mg/kg	<0,0010 (NWG)	0,005	DIN EN 17322 : 2021-0		
PCB (52)	mg/kg	<0,0010 (NWG)	0,005	DIN EN 17322 : 2021-0		
PCB (101)	mg/kg	<0,0010 (NWG)	0,005	DIN EN 17322 : 2021-0		
PCB (118)	mg/kg	<0,0010 (NWG)	0,005	DIN EN 17322 : 2021-0		
PCB (138)	mg/kg	<0,0010 (NWG)	0,005	DIN EN 17322 : 2021-0		
PCB (153)	mg/kg	<0,0010 (NWG)	0,005	DIN EN 17322 : 2021-0		
PCB (180)	mg/kg	<0,0010 (NWG)	0,005	DIN EN 17322 : 2021-0		
PCB 7 Summe gem. BBodSchV 2021	mg/kg	<0,010 ×)	0,01	Berechnung aus Messwerten o Einzelparameter		
PCB 7 Summe gem. ErsatzbaustoffV	mg/kg	<0,010 #5)	0,01	Berechnung aus Messwerten of Einzelparameter		
Eluat						
Eluatanalyse in der Fraktion <32 mm				DIN 19529 : 2015-12		
Fraktion < 32 mm	%	° 100	0,1	DIN 19747 : 2009-07		
Fraktion > 32 mm	%	° <0,1	0,1	Berechnung aus dem Messw		
Eluat (DIN 19529)		•		DIN 19529 : 2015-12		
Temperatur Eluat	°C	19,8	0	DIN 38404-4 : 1976-1		
pH-Wert		8,4	0	DIN EN ISO 10523 : 2012-		
elektrische Leitfähigkeit	μS/cm	233	10	DIN EN 27888 : 1993-1		
Sulfat (SO4)	mg/l	15	2	DIN EN ISO 10304-1 : 2009-		
Arsen (As)	μg/l	<2,5	2,5	DIN EN ISO 17294-2 : 2017-		
Blei (Pb)	μg/l	<1	1	DIN EN ISO 17294-2 : 2017-		
Cadmium (Cd)	μg/l	<0,25	0,25	DIN EN ISO 17294-2 : 2017-		
Chrom (Cr)	μg/l	2,2	1	DIN EN ISO 17294-2 : 2017-		
Kupfer (Cu)	μg/l	<5	5	DIN EN ISO 17294-2 : 2017-		
Nickel (Ni)	μg/l	<5	5	DIN EN ISO 17294-2 : 2017-		
Quecksilber (Hg)	μg/l	<0,025	0,025	DIN EN ISO 12846 : 2012-		
Thallium (TI)	μg/l	<0,06	0,06	DIN EN ISO 17294-2 : 2017-		
Zink (Zn)	μg/l	<30	30	DIN EN ISO 17294-2 : 2017-		
Trübung nach GF-Filtration	NTU	5,1	0,1	DIN EN ISO 7027 : 2000-		
PCB (28)	μg/l	<0,00060 (NWG) pm)	0,002	DIN 38407-37 : 2013-1		
PCB (52)	μg/l	<0,00060 (NWG) pm)	0,002	DIN 38407-37 : 2013-1		
PCB (101)	μg/l	<0,00060 (NWG) pm)	0,002	DIN 38407-37 : 2013-1		
PCB (118)	μg/l	<0,00060 (NWG) pm)	0,002	DIN 38407-37 : 2013-1		
PCB (138)	μg/l	<0,00060 (NWG) pm)	0,002	DIN 38407-37 : 2013-1		
PCB (153)	μg/l	<0,00060 (NWG) pm)	0,002	DIN 38407-37 : 2013-1		
PCB (180)	µg/l	<0,00060 (NWG) pm)	0,002	DIN 38407-37 : 2013-1		
PCB 7 Summe gem. ErsatzbaustoffV	µg/l	<0,0030 #5)	0,003	Berechnung aus Messwerten Einzelparameter		
PCB 7 Summe gem. BBodSchV 2021	μg/l	<0,0030 x)	0,003	Berechnung aus Messwerten Einzelparameter		
Naphthalin	μg/l	<0,010 (NWG) ^{m)}	0,02	DIN 38407-39 : 2011-0		
1-Methylnaphthalin	μg/l	<0,0060 (NWG) pm)	0,02	DIN 38407-39 : 2011-0		
2-Methylnaphthalin	μg/l	<0,0060 (NWG) pm)	0,02	DIN 38407-39 : 2011-0		

ErsatzbaustoffV			·	Einzelparameter
Eluat	·			
Eluatanalyse in der Fraktion <32				DIN 19529 : 2015-12
mm				5.11 10020 : 2010 12
Fraktion < 32 mm	%	° 100	0,1	DIN 19747 : 2009-07
Fraktion > 32 mm	%	° <0,1	0,1	Berechnung aus dem Messwert
Eluat (DIN 19529)		0		DIN 19529 : 2015-12
Temperatur Eluat	°C	19,8	0	DIN 38404-4 : 1976-12
pH-Wert		8,4	0	DIN EN ISO 10523 : 2012-04
elektrische Leitfähigkeit	μS/cm	233	10	DIN EN 27888 : 1993-11
Sulfat (SO4)	mg/l	15	2	DIN EN ISO 10304-1 : 2009-07
Arsen (As)	μg/l	<2,5	2,5	DIN EN ISO 17294-2 : 2017-01
Blei (Pb)	μg/l	<1	1	DIN EN ISO 17294-2 : 2017-01
Cadmium (Cd)	μg/l	<0,25	0,25	DIN EN ISO 17294-2 : 2017-01
Chrom (Cr)	μg/l	2,2	1	DIN EN ISO 17294-2 : 2017-01
Kupfer (Cu)	μg/l	<5	5	DIN EN ISO 17294-2 : 2017-01
Nickel (Ni)	μg/l	<5	5	DIN EN ISO 17294-2 : 2017-01
Quecksilber (Hg)	μg/l	<0,025	0,025	DIN EN ISO 12846 : 2012-08
Thallium (TI)	μg/l	<0,06	0,06	DIN EN ISO 17294-2 : 2017-01
Zink (Zn)	μg/l	<30	30	DIN EN ISO 17294-2 : 2017-01
Trübung nach GF-Filtration	NTU	5,1	0,1	DIN EN ISO 7027 : 2000-04
PCB (28)	μg/l	<0,00060 (NWG) pm)	0,002	DIN 38407-37 : 2013-11
PCB (52)	μg/l	<0,00060 (NWG) pm)	0,002	DIN 38407-37 : 2013-11
PCB (101)	μg/l	<0,00060 (NWG) pm)	0,002	DIN 38407-37 : 2013-11
PCB (118)	μg/l	<0,00060 (NWG) pm)	0,002	DIN 38407-37 : 2013-11
PCB (138)	μg/l	<0,00060 (NWG) pm)	0,002	DIN 38407-37 : 2013-11
PCB (153)	μg/l	<0,00060 (NWG) pm)	0,002	DIN 38407-37 : 2013-11
PCB (180)	μg/l	<0,00060 (NWG) pm)	0,002	DIN 38407-37 : 2013-11
PCB 7 Summe gem.	μg/l	<0,0030 #5)	0,003	Berechnung aus Messwerten der
ErsatzbaustoffV		·		Einzelparameter
PCB 7 Summe gem. BBodSchV	μg/l	<0,0030 ^{x)}	0,003	Berechnung aus Messwerten der Einzelparameter
	ua/l	<0.010 (NWG) m)	0.02	· · ·
	µg/l	<0,010 (NWG) ^{m)} <0,0060 (NWG) ^{pm)}	0,02	DIN 38407-39 : 2011-09 DIN 38407-39 : 2011-09
1-Methylnaphthalin	µg/l			
2-Methylnaphthalin	μg/l	<0,0060 (NWG) pm)	0,02	DIN 38407-39 : 2011-09

Seite 2 von 4 Deutsche Akkreditierungsstelle D-PL-14289-01-00

AG Landshut HRB 7131 Ust/VAT-Id-Nr.: DE 128 944 188

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

26.03.2024 **Datum** Kundennr. 27018091

PRÜFBERICHT

3527924 223299 Öhringen BG Wammesfeld Auftrag

Analysennr. 387226 Bodenmaterial/Baggergut Kunden-Probenbezeichnung MP 4 RKS 18+22 / 0,2 - 1,6 m

		Einheit	Ergebnis	BestGr.	Methode
Acenar	ohthylen	μg/l	<0,0060 (NWG) pm)	0,02	DIN 38407-39 : 2011-09
Acenap	ohthen	μg/l	<0,0060 (NWG) pm)	0,02	DIN 38407-39 : 2011-09
Fluorer	η	μg/l	<0,0060 (NWG) pm)	0,02	DIN 38407-39 : 2011-09
Phenai	nthren	μg/l	<0,020 (+) ^{pm)}	0,02	DIN 38407-39 : 2011-09
ਰੂਂ Anthrac	cen	μg/l	<0,0060 (NWG) pm)	0,02	DIN 38407-39 : 2011-09
Anthrac Fluorar Pyren Benzo(nthen	μg/l	<0,020 (+) ^{pm)}	0,02	DIN 38407-39 : 2011-09
ž <i>Pyren</i>		μg/l	<0,0060 (NWG) pm)	0,02	DIN 38407-39 : 2011-09
Benzo((a)anthracen	μg/l	<0,0060 (NWG) pm)	0,02	DIN 38407-39 : 2011-09
Chryse	en	μg/l	<0,0060 (NWG) pm)	0,02	DIN 38407-39 : 2011-09
	(b)fluoranthen	μg/l	<0,0060 (NWG) pm)	0,02	DIN 38407-39 : 2011-09
Benzo((k)fluoranthen	μg/l	<0,0060 (NWG) pm)	0,02	DIN 38407-39 : 2011-09
Benzo((a)pyren	μg/l	<0,0060 (NWG) pm)	0,02	DIN 38407-39 : 2011-09
Dibenz Benzo(o(ah)anthracen	μg/l	<0,0060 (NWG) pm)	0,02	DIN 38407-39 : 2011-09
Benzo((ghi)perylen	μg/l	<0,0060 (NWG) pm)	0,02	DIN 38407-39 : 2011-09
	(1,2,3-cd)pyren	μg/l	<0,0060 (NWG) pm)	0,02	DIN 38407-39 : 2011-09
Naphtha BBodScl Naphtha	ılin/MethylnaphSumme gem. hV 2021	μg/l	<0,050 x)	0,05	Berechnung aus Messwerten der Einzelparameter
	ılin/MethylnaphSumme gem. austoffV	μg/l	<0,050 #5)	0,05	Berechnung aus Messwerten der Einzelparameter
PAK 15 2021 PAK 15	Summe gem. BBodSchV	µg/l	<0,050 x)	0,05	Berechnung aus Messwerten der Einzelparameter
	Summe gem. paustoffV	µg/l	<0,050 #5)	0,05	Berechnung aus Messwerten der Einzelparameter

x) Einzelwerte, die die Nachweis- oder Bestimmungsgrenze unterschreiten, wurden nicht berücksichtigt. #5) Einzelwerte, die die Nachweisgrenze unterschreiten, wurden nicht berücksichtigt. Bei Einzelwerten, die zwischen Nachweis- und Bestimmungsgrenze liegen, wurde die halbe

Bestimmungsgrenze zur Berechnung zugrunde gelegt.
pm) Die Nachweis-, bzw. Bestimmungsgrenze musste erhöht werden, da zur Extraktion und Analyse nur eine geringe Probenmenge vorlag. m) Die Nachweis-, bzw. Bestimmungsgrenze musste erhöht werden, da Matrixeffekte bzw. Substanzüberlagerungen eine Quantifizierung erschweren.

Erläuterung: Das Zeichen "<" oder n.b. in der Spalte Ergebnis bedeutet, der betreffende Parameter ist bei nebenstehender Bestimmungsgrenze nicht quantifizierbar.

Das Zeichen "<....(NWG)" oder n.n. in der Spalte Ergebnis bedeutet, der betreffende Parameter ist bei nebenstehender Nachweisgrenze nicht nachzuweisen.

Das Zeichen "<....(+)" in der Spalte Ergebnis bedeutet, der betreffende Parameter wurde im Bereich zwischen Nachweisgrenze und Bestimmungsgrenze qualitativ nachgewiesen.

Die parameterspezifischen analytischen Messunsicherheiten sowie Informationen zum Berechnungsverfahren sind auf Anfrage verfügbar, sofern die berichteten Ergebnisse oberhalb der parameterspezifischen Bestimmungsgrenze liegen. Die Mindestleistungskriterien der angewandten Verfahren beruhen bezüglich der Messunsicherheit in der Regel auf der Richtlinie 2009/90/EG der Europäischen Kommission.

Die Analysenwerte der Feststoffparameter beziehen sich auf die Trockensubstanz, bei den mit ° gekennzeichneten Parametern auf die Originalsubstanz.

Anmerkung zur Messung nach DIN EN ISO 10304-1: 2009-07:

Für die Messung wurde das erstellte Eluat/Perkolat bis zur weiteren Bearbeitung im Dunkeln gekühlt aufbewahrt.

Anmerkung zur Messung nach DIN EN ISO 10523: 2012-04:

Für die Messung wurde das erstellte Eluat/Perkolat bis zur weiteren Bearbeitung im Dunkeln gekühlt aufbewahrt.

Anmerkung zur Messung nach DIN EN ISO 12846: 2012-08:

Für die Messung wurde das erstellte Eluat/Perkolat mittels 30%iger Salzsäure stabilisiert.

Seite 3 von 4 Deutsche Akkreditierungsstelle D-PL-14289-01-00

ISO/IEC 17025:2018 akkreditiert.

DIN EN

gemäß

berichteten Verfahren

Pok

Die in diesem

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

Datum 26.03.2024 Kundennr. 27018091

PRÜFBERICHT

Symbol

dem

Ħ

sind

akkreditierte

Ausschließlich

akkreditiert.

17025:2018

gemäß DIN EN

sind

Die in diesem Dokument berichteten Verfahren

Auftrag 3527924 223299 Öhringen BG Wammesfeld

Analysennr. 387226 Bodenmaterial/Baggergut Kunden-Probenbezeichnung MP 4 RKS 18+22 / 0,2 - 1,6 m

Anmerkung zur Messung nach DIN EN ISO 17294-2: 2017-01:

Für die Messung wurde das erstellte Eluat/Perkolat mittels konzentrierter Salpetersäure stabilisiert.

Anmerkung zur Messung nach DIN EN ISO 7027: 2000-04:

Für die Messung wurde das erstellte Eluat/Perkolat bis zur weiteren Bearbeitung im Dunkeln gekühlt aufbewahrt.

Anmerkung zur Messung nach DIN EN 27888 : 1993-11:

Für die Messung wurde das erstellte Eluat/Perkolat bis zur Messung im Dunkeln gekühlt aufbewahrt.

Anmerkung zur Messung nach DIN EN 38404-4: 1976-12:

Für die Messung wurde das erstellte Eluat/Perkolat nicht stabilisiert.

Anmerkung zur Messung nach DIN 38407-37: 2013-11:

Für die Messung wurde das erstellte Eluat/Perkolat bis zur weiteren Bearbeitung im Dunkeln gekühlt aufbewahrt.

Anmerkung zur Messung nach DIN 38407-39 : 2011-09:

Für die Messung wurde das erstellte Eluat/Perkolat bis zur weiteren Bearbeitung im Dunkeln gekühlt aufbewahrt.

Anmerkung zur Bestimmung der Kohlenwasserstoffe gem. DIN EN 14039 : 2005-01 + LAGA KW/04 : 2019-09:

Das Probenmaterial wurde mittels Schütteln extrahiert und über eine Florisilsäule aufgereinigt.

Für die Eluaterstellung wurden je Ansatz 350 g Trockenmasse +/- 5g mit 700 ml deionisiertem Wasser versetzt und über einen Zeitraum von 24h bei 5 Umdrehungen pro Minute im Überkopfschüttler eluiert. Bei Bedarf werden mehrere Ansätze parallel eluiert. Die Fest-/Flüssigphasentrennung erfolgte für hydrophile Stoffe gemäß Zentrifugation/Membranfiltration, für hydrophobe Stoffe gemäß Zentrifugation/Glasfaserfiltration.

Beginn der Prüfungen: 08.03.2024 Ende der Prüfungen: 22.03.2024

Die Ergebnisse beziehen sich ausschließlich auf die geprüften Gegenstände. In Fällen, wo das Prüflabor nicht für die Probenahme verantwortlich war, gelten die berichteten Ergebnisse für die Proben wie erhalten. Das Laboratorium ist nicht für die vom Kunden bereitgestellten Informationen verantwortlich. Die ggf. im vorliegenden Prüfbericht dargestellten Kundeninformationen unterliegen nicht der Akkreditierung des Laboratoriums und können sich auf die Validität der Prüfergebnisse auswirken. Die auszugsweise Vervielfältigung des Berichts ohne unsere schriftliche Genehmigung ist nicht zulässig. Die Ergebnisse in diesem Prüfbericht werden gemäß der mit Ihnen schriftlich gemäß Auftragsbestätigung getroffenen Vereinbarung in vereinfachter Weise i.S. der DIN EN ISO/IEC 17025:2018, Abs. 7.8.1.3 berichtet.

AGROLAB Labor GmbH, Sebastian Waldinger, Tel. 08765/93996-700 serviceteam4.bruckberg@agrolab.de Kundenbetreuung

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

AGROLAB Labor GmbH, Dr-Pauling-Str.3, 84079 Bruckberg

GMP GEOTECHNIK GMBH & CO. KG Hedanstr. 17 97084 WÜRZBURG

> Datum 26.03.2024 Kundennr. 27018091

> > Methode

PRÜFBERICHT

Auftrag 3527924 223299 Öhringen BG Wammesfeld

Analysennr. 387227 Bodenmaterial/Baggergut

Einheit

Probeneingang 08.03.2024 Probenahme keine Angabe

Auftraggeber (Steigerwald) Probenehmer Kunden-Probenbezeichnung MP 5 RKS 23 / 0,1 - 1,0 m

Feststoff					
Analyse in der Fraktion < 2mm					DIN 19747 : 2009-07
Fraktion < 2 mm (Wägung)	%		57,2	0,1	DIN 19747 : 2009-07
Masse Laborprobe	kg	۰	1,60	0,001	DIN 19747 : 2009-07
Trockensubstanz	%	۰	86,6	0,1	DIN EN 15934 : 2012-11
Wassergehalt	%	۰	13 4		Berechnung aus dem Messwei

Ergebnis

Best.-Gr.

(3. 3)	+ / -		-,	
Masse Laborprobe	kg	° 1,60	0,001	DIN 19747 : 2009-07
Trockensubstanz	%	° 86,6	0,1	DIN EN 15934 : 2012-11
Wassergehalt	%	° 13,4		Berechnung aus dem Messwert
Kohlenstoff(C) organisch (TOC)	%	0,87	0,1	DIN EN 15936 : 2012-11
EOX	mg/kg	<0,30	0,3	DIN 38414-17 : 2017-01
Königswasseraufschluß				DIN EN 13657 : 2003-01
Arsen (As)	mg/kg	3,4	0,8	DIN EN 16171 : 2017-01
Blei (Pb)	mg/kg	6	2	DIN EN 16171 : 2017-01
Cadmium (Cd)	mg/kg	<0,13	0,13	DIN EN 16171 : 2017-01
Chrom (Cr)	mg/kg	55	1	DIN EN 16171 : 2017-01
Kupfer (Cu)	mg/kg	30	1	DIN EN 16171 : 2017-01
Nickel (Ni)	mg/kg	100	1	DIN EN 16171 : 2017-01
Quecksilber (Hg)	mg/kg	<0,05	0,05	DIN EN ISO 12846 : 2012-08
Thallium (TI)	mg/kg	<0,1	0,1	DIN EN 16171 : 2017-01
Zink (Zn)	mg/kg	66	6	DIN EN 16171 : 2017-01
Kohlenwasserstoffe C10-C22 (GC)	mg/kg	<50	50	DIN EN 14039 : 2005-01 + LAGA KW/04 : 2019-09
Kohlenwasserstoffe C10-C40	mg/kg	130	50	DIN EN 14039 : 2005-01 + LAGA KW/04 : 2019-09
Naphthalin	mg/kg	0,27 hb)	0,25	DIN ISO 18287 : 2006-05
Acenaphthylen	mg/kg	1,5 hb)	0,25	DIN ISO 18287 : 2006-05
Acenaphthen	mg/kg	0,70 hb)	0,25	DIN ISO 18287 : 2006-05
Fluoren	mg/kg	1,8 ^{hb)}	0,25	DIN ISO 18287 : 2006-05
Phenanthren	mg/kg	11 hb)	0,25	DIN ISO 18287 : 2006-05
Anthracen	mg/kg	4,0 hb)	0,25	DIN ISO 18287 : 2006-05
Fluoranthen	mg/kg	22 hb)	0,25	DIN ISO 18287 : 2006-05
Pyren	mg/kg	17 hb)	0,25	DIN ISO 18287 : 2006-05
Benzo(a)anthracen	mg/kg	14 hb)	0,25	DIN ISO 18287 : 2006-05
Chrysen	mg/kg	11 hb)	0,25	DIN ISO 18287 : 2006-05
Benzo(b)fluoranthen	mg/kg	20 hb)	0,25	DIN ISO 18287 : 2006-05
Benzo(k)fluoranthen	mg/kg	9,1 ^{hb)}	0,25	DIN ISO 18287 : 2006-05
Benzo(a)pyren	mg/kg	13 hb)	0,25	DIN ISO 18287 : 2006-05
Dibenzo(ah)anthracen	mg/kg	2,5 hb)	0,25	DIN ISO 18287 : 2006-05
Benzo(ghi)perylen	mg/kg	8,5 hb)	0,25	DIN ISO 18287 : 2006-05

Seite 1 von 4

in diesem Dokument berichteten Verfahren sind gemäß DIN EN ISO/IEC 17025:2018 akkreditiert. Ausschließlich nicht akkreditierte Verfahren sind mit dem Symbol

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

Your labs. Your service.

Datum 26.03.2024 Kundennr. 27018091

Methode

PRÜFBERICHT

Auftrag 3527924 223299 Öhringen BG Wammesfeld

Analysennr. 387227 Bodenmaterial/Baggergut

Einheit

Kunden-Probenbezeichnung MP 5 RKS 23 / 0,1 - 1,0 m

Indeno(1,2,3-cd)pyren	mg/kg	7,6 hb)	0,25	DIN ISO 18287 : 2006-05
PAK EPA Summe gem.	mg/kg	140	1	Berechnung aus Messwerten der
BBodSchV 2021				Einzelparameter
PAK EPA Summe gem. ErsatzbaustoffV	mg/kg	140 ^{#5)}	1 1	Berechnung aus Messwerten der Einzelparameter
PCB (28)	mg/kg	<0,0010 (NWG)	0,005	DIN EN 17322 : 2021-03
PCB (52)	mg/kg	<0,0010 (NWG)	0,005	DIN EN 17322 : 2021-03
PCB (101)	mg/kg	<0,0010 (NWG)	0,005	DIN EN 17322 : 2021-03
PCB (118)	mg/kg	<0,0010 (NWG)	0,005	DIN EN 17322 : 2021-03
PCB (178)	mg/kg	<0,0050 (+)	0,005	DIN EN 17322 : 2021-03
PCB (153)	mg/kg	<0,0030 (+)	0,005	DIN EN 17322 : 2021-03
PCB (180)	mg/kg	<0,0050 (+)	0,005	DIN EN 17322 : 2021-03
PCB 7 Summe gem. BBodSchV	mg/kg	<0,0030 (+)	0,003	Berechnung aus Messwerten der
2021	mg/kg	<0,010	0,01	Einzelparameter
PCB 7 Summe gem. ErsatzbaustoffV	mg/kg	<0,010 #5)	0,01	Berechnung aus Messwerten der Einzelparameter
Eluat				
Eluatanalyse in der Fraktion <32 mm				DIN 19529 : 2015-12
Fraktion < 32 mm	%	° 100	0,1	DIN 19747 : 2009-07
Fraktion > 32 mm	%	° <0,1	0,1	Berechnung aus dem Messwert
Eluat (DIN 19529)		۰	,	DIN 19529 : 2015-12
Temperatur Eluat	°C	20,4	0	DIN 38404-4 : 1976-12
pH-Wert		8,2	0	DIN EN ISO 10523 : 2012-04
elektrische Leitfähigkeit	µS/cm	263	10	DIN EN 27888 : 1993-11
Sulfat (SO4)	mg/l	6,4	2	DIN EN ISO 10304-1 : 2009-07
Arsen (As)	μg/l	<2,5	2,5	DIN EN ISO 17294-2 : 2017-01
Blei (Pb)	μg/l	2	1	DIN EN ISO 17294-2 : 2017-01
Cadmium (Cd)	μg/l	<0,25	0,25	DIN EN ISO 17294-2 : 2017-01
Chrom (Cr)	μg/l	1,7	1	DIN EN ISO 17294-2 : 2017-01
Kupfer (Cu)	μg/l	6	5	DIN EN ISO 17294-2 : 2017-01
Nickel (Ni)	μg/l	<5	5	DIN EN ISO 17294-2 : 2017-01
Quecksilber (Hg)	μg/l	<0,025	0,025	DIN EN ISO 12846 : 2012-08
Thallium (TI)	μg/l	<0,06	0,06	DIN EN ISO 17294-2 : 2017-01
Zink (Zn)	μg/l	<30	30	DIN EN ISO 17294-2 : 2017-01
Trübung nach GF-Filtration	NTU	12	0,1	DIN EN ISO 7027 : 2000-04
PCB (28)	μg/l	<0,010 wf)	0,01	DIN 38407-37 : 2013-11
PCB (52)	μg/l	<0,010 wf)	0,01	DIN 38407-37 : 2013-11
PCB (101)	μg/l	<0,010 wf)	0,01	DIN 38407-37 : 2013-11
PCB (118)	μg/l	<0,010 wf)	0,01	DIN 38407-37 : 2013-11
PCB (138)	μg/l	<0,010 wf)	0,01	DIN 38407-37 : 2013-11
PCB (153)	μg/l	<0,010 wf)	0,01	DIN 38407-37 : 2013-11
PCB (180)	μg/l	<0,010 wf)	0,01	DIN 38407-37 : 2013-11
PCB 7 Summe gem.	µg/l	0,035 #5)	0,003	Berechnung aus Messwerten der
ErsatzbaustoffV			0.555	Einzelparameter
PCB 7 Summe gem. BBodSchV 2021	μg/l	<0,0030 x)	0,003	Berechnung aus Messwerten der Einzelparameter
Naphthalin	μg/l	0,079	0,01	DIN 38407-39 : 2011-09
1-Methylnaphthalin	μg/l	0,073	0,01	DIN 38407-39 : 2011-09
2-Methylnaphthalin	μg/l	0,040	0,01	DIN 38407-39 : 2011-09

Ergebnis

Best.-Gr.

Seite 2 von 4 Deutsche Akkreditierungsstelle D-PL-14289-01-00

AG Landshut HRB 7131 Ust/VAT-Id-Nr.: DE 128 944 188

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

26.03.2024 **Datum** Kundennr. 27018091

PRÜFBERICHT

3527924 223299 Öhringen BG Wammesfeld Auftrag

Analysennr. 387227 Bodenmaterial/Baggergut

Kunden-Probenbezeichnung MP 5 RKS 23 / 0,1 - 1,0 m

	Einheit	Ergebnis	BestGr.	Methode
Acenaphthylen	µg/l	0,062	0,01	DIN 38407-39 : 2011-09
Acenaphthen	μg/l	0,46	0,01	DIN 38407-39 : 2011-09
Fluoren	μg/l	0,45	0,01	DIN 38407-39 : 2011-09
Phenanthren	μg/l	0,36	0,01	DIN 38407-39 : 2011-09
Anthracen	μg/l	0,34	0,01	DIN 38407-39 : 2011-09
Anthracen Fluoranthen Pyren Benzo(a)anthracen	μg/l	0,69	0,01	DIN 38407-39 : 2011-09
Pyren	μg/l	0,36	0,01	DIN 38407-39 : 2011-09
Benzo(a)anthracen	μg/l	0,10	0,01	DIN 38407-39 : 2011-09
	μg/l	0,11	0,01	DIN 38407-39 : 2011-09
	μg/l	0,063	0,01	DIN 38407-39 : 2011-09
Benzo(k)fluoranthen	μg/l	0,035	0,01	DIN 38407-39 : 2011-09
Benzo(b)fluoranthen Benzo(k)fluoranthen Benzo(a)pyren Dibenzo(ah)anthracen Benzo(ghi)perylen Indeno(1,2,3-cd)pyren	μg/l	0,065	0,01	DIN 38407-39 : 2011-09
Dibenzo(ah)anthracen	μg/l	<0,020 (NWG) m)	0,025	DIN 38407-39 : 2011-09
Benzo(ghi)perylen	μg/l	0,087	0,01	DIN 38407-39 : 2011-09
	μg/l	0,052	0,01	DIN 38407-39 : 2011-09
Naphthalin/MethylnaphSumme gem. BBodSchV 2021 Naphthalin/MethylnaphSumme gem.	μg/l	0,19	0,05	Berechnung aus Messwerten der Einzelparameter
	μg/l	0,19 #5)	0,05	Berechnung aus Messwerten der Einzelparameter
PAK 15 Summe gem. BBodSchV 2021 PAK 15 Summe gem.	μg/l	3,2 ^{x)}	0,05	Berechnung aus Messwerten der Einzelparameter
PAK 15 Summe gem. ErsatzbaustoffV	µg/l	3,2 #5)	0,05	Berechnung aus Messwerten der Einzelparameter

x) Einzelwerte, die die Nachweis- oder Bestimmungsgrenze unterschreiten, wurden nicht berücksichtigt. #5) Einzelwerte, die die Nachweisgrenze unterschreiten, wurden nicht berücksichtigt. Bei Einzelwerten, die zwischen Nachweis- und Bestimmungsgrenze liegen, wurde die halbe

Bestimmungsgrenze zur Berechnung zugrunde gelegt.
m) Die Nachweis-, bzw. Bestimmungsgrenze musste erhöht werden, da Matrixeffekte bzw. Substanzüberlagerungen eine Quantifizierung erschweren.

hb) Die Nachweis-Bestimmungsgrenze musste erhöht werden, da eine hohe Belastung einzelner Analyten eine Vermessung in der für die angegebenen Grenzen notwendigen unverdünnten Analyse nicht erlaubte.
wf) Die Wiederfindung eines oder mehrerer internen Standards liegen bei vorliegender Probe bei <50%, jedoch >10%. Es ist somit eine erhöhte Messunsicherheit zu erwarten.

Erläuterung: Das Zeichen "<" oder n.b. in der Spalte Ergebnis bedeutet, der betreffende Parameter ist bei nebenstehender

Bestimmungsgrenze nicht quantifizierbar. Das Zeichen "<....(NWG)" oder n.n. in der Spalte Ergebnis bedeutet, der betreffende Parameter ist bei nebenstehender Nachweisgrenze nicht nachzuweisen.

Das Zeichen "<....(+)" in der Spalte Ergebnis bedeutet, der betreffende Parameter wurde im Bereich zwischen Nachweisgrenze und Bestimmungsgrenze qualitativ nachgewiesen.

Die parameterspezifischen analytischen Messunsicherheiten sowie Informationen zum Berechnungsverfahren sind auf Anfrage verfügbar, sofern die berichteten Ergebnisse oberhalb der parameterspezifischen Bestimmungsgrenze liegen. Die Mindestleistungskriterien der angewandten Verfahren beruhen bezüglich der Messunsicherheit in der Regel auf der Richtlinie 2009/90/EG der Europäischen Kommission.

Die Analysenwerte der Feststoffparameter beziehen sich auf die Trockensubstanz, bei den mit ° gekennzeichneten Parametern auf die Original substanz.

Anmerkung zur Messung nach DIN EN ISO 10304-1: 2009-07:

Für die Messung wurde das erstellte Eluat/Perkolat bis zur weiteren Bearbeitung im Dunkeln gekühlt aufbewahrt.

Anmerkung zur Messung nach DIN EN ISO 10523: 2012-04:

Für die Messung wurde das erstellte Eluat/Perkolat bis zur weiteren Bearbeitung im Dunkeln gekühlt aufbewahrt.

Anmerkung zur Messung nach DIN EN ISO 12846 : 2012-08:

Für die Messung wurde das erstellte Eluat/Perkolat mittels 30%iger Salzsäure stabilisiert.

17025:2018 akkreditiert.

DIN EN

gemäß

Verfahren sind

Dokument berichteten

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

Datum 26.03.2024 Kundennr. 27018091

PRÜFBERICHT

Symbol

dem

Ħ

sind

akkreditierte

Ausschließlich

akkreditiert.

17025:2018

Ш N gemäß

sind

Die in diesem Dokument berichteten Verfahren

3527924 223299 Öhringen BG Wammesfeld Auftrag

Analysennr. 387227 Bodenmaterial/Baggergut

Kunden-Probenbezeichnung MP 5 RKS 23 / 0,1 - 1,0 m

Anmerkung zur Messung nach DIN EN ISO 17294-2: 2017-01:

Für die Messung wurde das erstellte Eluat/Perkolat mittels konzentrierter Salpetersäure stabilisiert.

Anmerkung zur Messung nach DIN EN ISO 7027: 2000-04:

Für die Messung wurde das erstellte Eluat/Perkolat bis zur weiteren Bearbeitung im Dunkeln gekühlt aufbewahrt.

Anmerkung zur Messung nach DIN EN 27888 : 1993-11:

Für die Messung wurde das erstellte Eluat/Perkolat bis zur Messung im Dunkeln gekühlt aufbewahrt.

Anmerkung zur Messung nach DIN EN 38404-4: 1976-12:

Für die Messung wurde das erstellte Eluat/Perkolat nicht stabilisiert.

Anmerkung zur Messung nach DIN 38407-37: 2013-11:

Für die Messung wurde das erstellte Eluat/Perkolat bis zur weiteren Bearbeitung im Dunkeln gekühlt aufbewahrt.

Anmerkung zur Messung nach DIN 38407-39 : 2011-09:

Für die Messung wurde das erstellte Eluat/Perkolat bis zur weiteren Bearbeitung im Dunkeln gekühlt aufbewahrt.

Anmerkung zur Bestimmung der Kohlenwasserstoffe gem. DIN EN 14039 : 2005-01 + LAGA KW/04 : 2019-09:

Das Probenmaterial wurde mittels Schütteln extrahiert und über eine Florisilsäule aufgereinigt.

Für die Eluaterstellung wurden je Ansatz 350 g Trockenmasse +/- 5g mit 700 ml deionisiertem Wasser versetzt und über einen Zeitraum von 24h bei 5 Umdrehungen pro Minute im Überkopfschüttler eluiert. Bei Bedarf werden mehrere Ansätze parallel eluiert. Die Fest-/Flüssigphasentrennung erfolgte für hydrophile Stoffe gemäß Zentrifugation/Membranfiltration, für hydrophobe Stoffe gemäß Zentrifugation/Glasfaserfiltration.

Beginn der Prüfungen: 08.03.2024 Ende der Prüfungen: 22.03.2024

Die Ergebnisse beziehen sich ausschließlich auf die geprüften Gegenstände. In Fällen, wo das Prüflabor nicht für die Probenahme verantwortlich war, gelten die berichteten Ergebnisse für die Proben wie erhalten. Das Laboratorium ist nicht für die vom Kunden bereitgestellten Informationen verantwortlich. Die ggf. im vorliegenden Prüfbericht dargestellten Kundeninformationen unterliegen nicht der Akkreditierung des Laboratoriums und können sich auf die Validität der Prüfergebnisse auswirken. Die auszugsweise Vervielfältigung des Berichts ohne unsere schriftliche Genehmigung ist nicht zulässig. Die Ergebnisse in diesem Prüfbericht werden gemäß der mit Ihnen schriftlich gemäß Auftragsbestätigung getroffenen Vereinbarung in vereinfachter Weise i.S. der DIN EN ISO/IEC 17025:2018, Abs. 7.8.1.3 berichtet.

AGROLAB Labor GmbH, Sebastian Waldinger, Tel. 08765/93996-700 serviceteam4.bruckberg@agrolab.de Kundenbetreuung

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

AGROLAB Labor GmbH, Dr-Pauling-Str.3, 84079 Bruckberg

GMP GEOTECHNIK GMBH & CO. KG Hedanstr. 17 97084 WÜRZBURG

> Datum 26.03.2024 Kundennr. 27018091

PRÜFBERICHT

Auftrag 3527924 223299 Öhringen BG Wammesfeld

Analysennr. 387228 Bodenmaterial/Baggergut

Probeneingang 08.03.2024 Probenahme keine Angabe

Auftraggeber (Steigerwald) Probenehmer Kunden-Probenbezeichnung MP 6 RKS 24-26 / 0,1 - 2,0 m

	Einheit	Ergebnis	BestGr.	Methode
Feststoff		Ŭ		
Analyse in der Fraktion < 2mm				DIN 19747 : 2009-07
Fraktion < 2 mm (Wägung)	%	97,5	0,1	DIN 19747 : 2009-07
Masse Laborprobe	kg	° 3,20	0,001	DIN 19747 : 2009-0
Trockensubstanz	%	° 82,2	0,1	DIN EN 15934 : 2012
Wassergehalt	%	° 17,8		Berechnung aus dem Mess
Kohlenstoff(C) organisch (TOC)	%	0,61	0,1	DIN EN 15936 : 2012
EOX	mg/kg	<0,30	0,3	DIN 38414-17 : 2017
Königswasseraufschluß				DIN EN 13657 : 2003
Arsen (As)	mg/kg	8,6	0,8	DIN EN 16171 : 2017
Blei (Pb)	mg/kg	20	2	DIN EN 16171 : 2017
Cadmium (Cd)	mg/kg	0,18	0,13	DIN EN 16171 : 2017
Chrom (Cr)	mg/kg	32	1	DIN EN 16171 : 2017
Kupfer (Cu)	mg/kg	15	1	DIN EN 16171 : 2017
Nickel (Ni)	mg/kg	25	1	DIN EN 16171 : 2017
Quecksilber (Hg)	mg/kg	<0,05	0,05	DIN EN ISO 12846 : 201
Thallium (TI)	mg/kg	0,2	0,1	DIN EN 16171 : 2017
Zink (Zn)	mg/kg	47	6	DIN EN 16171 : 2017
Kohlenwasserstoffe C10-C22 (GC)	mg/kg	<50	50	DIN EN 14039 : 2005-01 + L KW/04 : 2019-09
Kohlenwasserstoffe C10-C40	mg/kg	<50	50	DIN EN 14039 : 2005-01 + L KW/04 : 2019-09
Vaphthalin	mg/kg	<0,010 (NWG)	0,05	DIN ISO 18287 : 2006-
Acenaphthylen	mg/kg	0,12	0,05	DIN ISO 18287 : 2006-
Acenaphthen	mg/kg	<0,010 (NWG)	0,05	DIN ISO 18287 : 2006-
Fluoren	mg/kg	<0,050 (+)	0,05	DIN ISO 18287 : 2006-
Phenanthren	mg/kg	0,32	0,05	DIN ISO 18287 : 2006-
Anthracen	mg/kg	0,11	0,05	DIN ISO 18287 : 2006-
Fluoranthen	mg/kg	1,7	0,05	DIN ISO 18287 : 2006-
Pyren	mg/kg	0,98	0,05	DIN ISO 18287 : 2006-
Benzo(a)anthracen	mg/kg	0,72	0,05	DIN ISO 18287 : 2006-
Chrysen	mg/kg	0,76	0,05	DIN ISO 18287 : 2006-
Benzo(b)fluoranthen	mg/kg	1,2	0,05	DIN ISO 18287 : 2006-
Benzo(k)fluoranthen	mg/kg	0,62	0,05	DIN ISO 18287 : 2006-
Benzo(a)pyren	mg/kg	0,74	0,05	DIN ISO 18287 : 2006-
Dibenzo(ah)anthracen	mg/kg	0,20	0,05	DIN ISO 18287 : 2006-
Benzo(ghi)perylen	mg/kg	0,50	0,05	DIN ISO 18287 : 2006-

Deutsche Akkreditierungsstelle D-PL-14289-01-00

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

Your labs. Your service.

Datum 26.03.2024 Kundennr. 27018091

Methode

PRÜFBERICHT

Auftrag 3527924 223299 Öhringen BG Wammesfeld

Analysennr. 387228 Bodenmaterial/Baggergut Kunden-Probenbezeichnung MP 6 RKS 24-26 / 0,1 - 2,0 m Einheit

		9		
Indeno(1,2,3-cd)pyren	mg/kg	0,58	0,05	DIN ISO 18287 : 2006-05
PAK EPA Summe gem. BBodSchV 2021	mg/kg	8,6 x)	1	Berechnung aus Messwerten de Einzelparameter
PAK EPA Summe gem. ErsatzbaustoffV	mg/kg	8,6 #5)	1	Berechnung aus Messwerten de Einzelparameter
PCB (28)	mg/kg	<0,0010 (NWG)	0,005	DIN EN 17322 : 2021-03
PCB (52)	mg/kg	<0,0010 (NWG)	0,005	DIN EN 17322 : 2021-03
PCB (101)	mg/kg	<0,0010 (NWG)	0,005	DIN EN 17322 : 2021-03
PCB (118)	mg/kg	<0,0010 (NWG)	0,005	DIN EN 17322 : 2021-03
PCB (138)	mg/kg	<0,0010 (NWG)	0,005	DIN EN 17322 : 2021-03
PCB (153)	mg/kg	<0,0010 (NWG)	0,005	DIN EN 17322 : 2021-03
PCB (180)	mg/kg	<0,0010 (NWG)	0,005	DIN EN 17322 : 2021-03
PCB 7 Summe gem. BBodSchV 2021	mg/kg	<0,010 x)	0,01	Berechnung aus Messwerten de Einzelparameter
PCB 7 Summe gem. ErsatzbaustoffV	mg/kg	<0,010 #5)	0,01	Berechnung aus Messwerten de Einzelparameter
Eluat				
Eluatanalyse in der Fraktion <32 mm				DIN 19529 : 2015-12
Fraktion < 32 mm	%	° 100	0,1	DIN 19747 : 2009-07
Fraktion > 32 mm	%	° <0,1	0,1	Berechnung aus dem Messwe
Eluat (DIN 19529)		•		DIN 19529 : 2015-12
Temperatur Eluat	°C	20,3	0	DIN 38404-4 : 1976-12
pH-Wert		8,2	0	DIN EN ISO 10523 : 2012-0
elektrische Leitfähigkeit	μS/cm	199	10	DIN EN 27888 : 1993-1
Sulfat (SO4)	mg/l	2,7	2	DIN EN ISO 10304-1 : 2009-0
Arsen (As)	μg/l	<2,5	2,5	DIN EN ISO 17294-2 : 2017-0
Blei (Pb)	μg/l	<1	1	DIN EN ISO 17294-2 : 2017-0
Cadmium (Cd)	μg/l	<0,25	0,25	DIN EN ISO 17294-2 : 2017-0
Chrom (Cr)	μg/l	3	1	DIN EN ISO 17294-2 : 2017-0
Kupfer (Cu)	μg/l	<5	5	DIN EN ISO 17294-2 : 2017-0
Nickel (Ni)	μg/l	<5	5	DIN EN ISO 17294-2 : 2017-0
Quecksilber (Hg)	μg/l	<0,025	0,025	DIN EN ISO 12846 : 2012-0
Thallium (TI)	μg/l	<0,06	0,06	DIN EN ISO 17294-2 : 2017-0
Zink (Zn)	μg/l	<30	30	DIN EN ISO 17294-2 : 2017-0
Trübung nach GF-Filtration	NTU	7,7	0,1	DIN EN ISO 7027 : 2000-0
PCB (28)	μg/l	<0,00030 (NWG)	0,001	DIN 38407-37 : 2013-11
PCB (52)	μg/l	<0,00030 (NWG)	0,001	DIN 38407-37 : 2013-11
PCB (101)	μg/l	<0,00030 (NWG)	0,001	DIN 38407-37 : 2013-11
PCB (118)	μg/l	<0,00030 (NWG)	0,001	DIN 38407-37 : 2013-11
PCB (138)	μg/l	<0,00030 (NWG)	0,001	DIN 38407-37 : 2013-11
PCB (153)	μg/l	<0,00030 (NWG)	0,001	DIN 38407-37 : 2013-11
PCB (180)	μg/l	<0,00030 (NWG)	0,001	DIN 38407-37 : 2013-11
PCB 7 Summe gem. ErsatzbaustoffV	µg/l	<0,0030 #5)	0,003	Berechnung aus Messwerten de Einzelparameter
PCB 7 Summe gem. BBodSchV 2021	μg/l	<0,0030 x)	0,003	Berechnung aus Messwerten de Einzelparameter
Naphthalin	μg/l	0,010	0,01	DIN 38407-39 : 2011-09
1-Methylnaphthalin	μg/l	<0,010 (+)	0,01	DIN 38407-39 : 2011-09
2-Methylnaphthalin	μg/l	<0,010 (+)	0,01	DIN 38407-39 : 2011-09

Ergebnis

Best.-Gr.

((DAkkS Deutsche Akkreditierungsstelle D-PL-14289-01-00

AG Landshut HRB 7131 Ust/VAT-Id-Nr.: DE 128 944 188

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

26.03.2024 Datum Kundennr. 27018091

PRÜFBERICHT

3527924 223299 Öhringen BG Wammesfeld Auftrag

Analysennr. 387228 Bodenmaterial/Baggergut Kunden-Probenbezeichnung MP 6 RKS 24-26 / 0,1 - 2,0 m

	Einheit	Ergebnis	BestGr.	Methode
Acenaphthylen	μg/l	<0,0030 (NWG)	0,01	DIN 38407-39 : 2011-09
Acenaphthen	μg/l	<0,010 (+)	0,01	DIN 38407-39 : 2011-09
Fluoren	μg/l	<0,010 (+)	0,01	DIN 38407-39 : 2011-09
Phenanthren	μg/l	0,028	0,01	DIN 38407-39 : 2011-09
Anthracen	μg/l	<0,0030 (NWG)	0,01	DIN 38407-39 : 2011-09
Anthracen Fluoranthen Pyren Benzo(a)anthracen	μg/l	0,013	0,01	DIN 38407-39 : 2011-09
Pyren	μg/l	<0,010 (+)	0,01	DIN 38407-39 : 2011-09
Benzo(a)anthracen	μg/l	<0,0030 (NWG)	0,01	DIN 38407-39 : 2011-09
Chrysen	μg/l	<0,0030 (NWG)	0,01	DIN 38407-39 : 2011-09
Benzo(b)fluoranthen	μg/l	<0,0030 (NWG)	0,01	DIN 38407-39 : 2011-09
Benzo(b)fluoranthen Benzo(k)fluoranthen Benzo(a)pyren Dibenzo(ah)anthracen Benzo(ghi)perylen Indeno(1,2,3-cd)pyren	μg/l	<0,0030 (NWG)	0,01	DIN 38407-39 : 2011-09
Benzo(a)pyren	μg/l	<0,0030 (NWG)	0,01	DIN 38407-39 : 2011-09
Dibenzo(ah)anthracen	μg/l	<0,0030 (NWG)	0,01	DIN 38407-39 : 2011-09
Benzo(ghi)perylen	μg/l	<0,0030 (NWG)	0,01	DIN 38407-39 : 2011-09
	μg/l	<0,0030 (NWG)	0,01	DIN 38407-39 : 2011-09
Naphthalin/MethylnaphSumme gem. BBodSchV 2021 Naphthalin/MethylnaphSumme gem.	µg/l	<0,050 x)	0,05	Berechnung aus Messwerten der Einzelparameter
	μg/l	<0,050 #5)	0,05	Berechnung aus Messwerten der Einzelparameter
PAK 15 Summe gem. BBodSchV 2021 PAK 15 Summe gem.	µg/l	<0,050 ^{x)}	0,05	Berechnung aus Messwerten der Einzelparameter
PAK 15 Summe gem. ErsatzbaustoffV	μg/l	0,056 #5)	0,05	Berechnung aus Messwerten der Einzelparameter

Erläuterung: Das Zeichen "<" oder n.b. in der Spalte Ergebnis bedeutet, der betreffende Parameter ist bei nebenstehender Bestimmungsgrenze nicht quantifizierbar.

Das Zeichen "<....(NWG)" oder n.n. in der Spalte Ergebnis bedeutet, der betreffende Parameter ist bei nebenstehender Nachweisgrenze nicht nachzuweisen.

Das Zeichen "<....(+)" in der Spalte Ergebnis bedeutet, der betreffende Parameter wurde im Bereich zwischen Nachweisgrenze und Bestimmungsgrenze qualitativ nachgewiesen.

Die parameterspezifischen analytischen Messunsicherheiten sowie Informationen zum Berechnungsverfahren sind auf Anfrage verfügbar, sofern die berichteten Ergebnisse oberhalb der parameterspezifischen Bestimmungsgrenze liegen. Die Mindestleistungskriterien der angewandten Verfahren beruhen bezüglich der Messunsicherheit in der Regel auf der Richtlinie 2009/90/EG der Europäischen Kommission.

Die Analysenwerte der Feststoffparameter beziehen sich auf die Trockensubstanz, bei den mit ° gekennzeichneten Parametern auf die Originalsubstanz.

Anmerkung zur Messung nach DIN EN ISO 10304-1: 2009-07:

Für die Messung wurde das erstellte Eluat/Perkolat bis zur weiteren Bearbeitung im Dunkeln gekühlt aufbewahrt.

Anmerkung zur Messung nach DIN EN ISO 10523: 2012-04:

Für die Messung wurde das erstellte Eluat/Perkolat bis zur weiteren Bearbeitung im Dunkeln gekühlt aufbewahrt.

Anmerkung zur Messung nach DIN EN ISO 12846: 2012-08:

Für die Messung wurde das erstellte Eluat/Perkolat mittels 30%iger Salzsäure stabilisiert.

DIN EN ISO/IEC

gemäß

berichteten Verfahren sind

Die in diesem Dokument

x) Einzelwerte, die die Nachweis- oder Bestimmungsgrenze unterschreiten, wurden nicht berücksichtigt. #5) Einzelwerte, die die Nachweisgrenze unterschreiten, wurden nicht berücksichtigt. Bei Einzelwerten, die zwischen Nachweis- und Bestimmungsgrenze liegen, wurde die halbe Bestimmungsgrenze zur Berechnung zugrunde gelegt.

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

Datum 26.03.2024 Kundennr. 27018091

PRÜFBERICHT

Symbol

dem

Ħ

sind

akkreditierte

Ausschließlich

akkreditiert.

17025:2018

gemäß DIN EN

sind

Die in diesem Dokument berichteten Verfahren

Auftrag 3527924 223299 Öhringen BG Wammesfeld

Analysennr. 387228 Bodenmaterial/Baggergut Kunden-Probenbezeichnung MP 6 RKS 24-26 / 0,1 - 2,0 m

Anmerkung zur Messung nach DIN EN ISO 17294-2: 2017-01:

Für die Messung wurde das erstellte Eluat/Perkolat mittels konzentrierter Salpetersäure stabilisiert.

Anmerkung zur Messung nach DIN EN ISO 7027: 2000-04:

Für die Messung wurde das erstellte Eluat/Perkolat bis zur weiteren Bearbeitung im Dunkeln gekühlt aufbewahrt.

Anmerkung zur Messung nach DIN EN 27888 : 1993-11:

Für die Messung wurde das erstellte Eluat/Perkolat bis zur Messung im Dunkeln gekühlt aufbewahrt.

Anmerkung zur Messung nach DIN EN 38404-4: 1976-12:

Für die Messung wurde das erstellte Eluat/Perkolat nicht stabilisiert.

Anmerkung zur Messung nach DIN 38407-37: 2013-11:

Für die Messung wurde das erstellte Eluat/Perkolat bis zur weiteren Bearbeitung im Dunkeln gekühlt aufbewahrt.

Anmerkung zur Messung nach DIN 38407-39 : 2011-09:

Für die Messung wurde das erstellte Eluat/Perkolat bis zur weiteren Bearbeitung im Dunkeln gekühlt aufbewahrt.

Anmerkung zur Bestimmung der Kohlenwasserstoffe gem. DIN EN 14039 : 2005-01 + LAGA KW/04 : 2019-09:

Das Probenmaterial wurde mittels Schütteln extrahiert und über eine Florisilsäule aufgereinigt.

Für die Eluaterstellung wurden je Ansatz 350 g Trockenmasse +/- 5g mit 700 ml deionisiertem Wasser versetzt und über einen Zeitraum von 24h bei 5 Umdrehungen pro Minute im Überkopfschüttler eluiert. Bei Bedarf werden mehrere Ansätze parallel eluiert. Die Fest-/Flüssigphasentrennung erfolgte für hydrophile Stoffe gemäß Zentrifugation/Membranfiltration, für hydrophobe Stoffe gemäß Zentrifugation/Glasfaserfiltration.

Beginn der Prüfungen: 08.03.2024 Ende der Prüfungen: 22.03.2024

Die Ergebnisse beziehen sich ausschließlich auf die geprüften Gegenstände. In Fällen, wo das Prüflabor nicht für die Probenahme verantwortlich war, gelten die berichteten Ergebnisse für die Proben wie erhalten. Das Laboratorium ist nicht für die vom Kunden bereitgestellten Informationen verantwortlich. Die ggf. im vorliegenden Prüfbericht dargestellten Kundeninformationen unterliegen nicht der Akkreditierung des Laboratoriums und können sich auf die Validität der Prüfergebnisse auswirken. Die auszugsweise Vervielfältigung des Berichts ohne unsere schriftliche Genehmigung ist nicht zulässig. Die Ergebnisse in diesem Prüfbericht werden gemäß der mit Ihnen schriftlich gemäß Auftragsbestätigung getroffenen Vereinbarung in vereinfachter Weise i.S. der DIN EN ISO/IEC 17025:2018, Abs. 7.8.1.3 berichtet.

AGROLAB Labor GmbH, Sebastian Waldinger, Tel. 08765/93996-700 serviceteam4.bruckberg@agrolab.de Kundenbetreuung